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Al for software engineering has made remarkable progress recently, becoming a notable
success within generative Al Despite this, there are still many challenges that need to
be addressed before automated software engineering reaches its full potential. It should
be possible to reach high levels of automation where humans can focus on the critical
decisions of what to build and how to balance difficult tradeoffs while most routine
development effort is automated away. Reaching this level of automation will require
substantial research and engineering efforts across academia and industry. In this paper,
we aim to discuss progress towards this in a threefold manner. First, we provide a
structured taxonomy of concrete tasks in Al for software engineering, emphasizing
the many other tasks in software engineering beyond code generation and completion.
Second, we outline several key bottlenecks that limit current approaches. Finally, we
provide an opinionated list of promising research directions toward making progress
on these bottlenecks, hoping to inspire future research in this rapidly maturing field.

* Equal contribution, ordered alphabetically by last name
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1 Introduction

Al for software engineering has made remarkable progress recently, becoming a notable success
within generative Al. Despite this, there are still many challenges that need to be addressed before
automated software engineering reaches its full potential. With additional efforts, it should be
possible to reach high levels of automation where humans can focus on the critical decisions of
what to build and how to balance difficult tradeoffs while most routine development effort is
automated away. Reaching this level of automation, however, will require substantial research and
engineering efforts across academia and industry. This paper provides an opinionated view of the
tasks, challenges, and promising directions towards achieving this goal.

Many existing surveys overlap with the topics that are discussed in this paper. Liang et al. (2024)
and Sergeyuk et al. (2025) survey the successes and challenges of Al programming assistants,
(Wang et al., 2024c) survey using LLMs for software testing, and Joel et al. (2024) survey using
LLMs in low-resource and domain-specific languages, and Zhang et al. (2023¢) focus on automated
program repair, both with and without LLMs. Finally, Yang et al. (2024d) is a roadmap for formal
mathematical reasoning and has some overlap with our discussion on software verification.

In addition, many papers discuss the current state, challenges, and future of Al for software
engineering (Fan et al., 2023; Ozkaya, 2023; Wong et al., 2023; Zheng et al., 2023; Hou et al., 2024;
Jin et al., 2024; Wan et al., 2024b; Roychoudhury et al., 2025a). Our work draws inspiration from
them, and we recommend that the reader consult with them for alternative perspectives.

In this paper, our goal is threefold. In Sec. 2, we provide a structured taxonomy of concrete tasks
in Al for software engineering. In particular, we emphasize that there are many other tasks in
software engineering beyond code generation and code completion, encouraging research in these
areas. We provide three measures for categorizing concrete realizations of each task: the scale of
the problem, the logical complexity, and the level of human intervention.

Moving forward to Sec. 3, we highlight nine challenges in the field that today’s models face,
each cross-cutting and applicable to several tasks. In Sec. 4, we posit a set of promising research
directions to tackle the challenges above, with Fig. 1 summarizing which directions correspond to
each challenge. We hope that through our paper, the reader can appreciate the progress the field
has made, understand the shortcomings of today’s state-of-the-art models, and take inspiration
from our suggested future ideas for tackling these challenges.

2 Tasks in AI Software Engineering

We first provide a taxonomy of tasks in Al software engineering. To provide a structured way to
consider concrete realizations of each task, we define three measures that apply across them: scope,
logical complexity, and level of human intervention. To achieve an Al software engineer, we strive
for Al to be capable across the board for all three measures.

Scope Measure: We define three levels of scope, the extent of changes that the AI makes to the
codebase. Function-level scope refers to single, self-contained functions such as in HumanEval
(Chen et al., 2021a) and MBPP (Austin et al., 2021). Self-contained unit scope goes beyond singular
functions and to larger chunks of code such as entire files and classes, such as FullStackBench
(Liu et al., 2024d) and BigCodeBench (Zhuo et al., 2024). Finally, project-level scope refers to larger
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Figure 1: Overview of Challenges (Sec. 3) and Paths Forward (Sec. 4) in Al for Software Engineering

codebases such as entire repositories, such as in Commit0 (Zhao et al., 2024) and SWE-Bench
(Jimenez et al., 2024).

Logical Complexity Measure: Tasks require a wide range of reasoning abilities when it comes
to devising algorithms to solve them. Low logical complexity tasks require little to no reasoning,
such as writing CRUD (create, read, update, delete) applications or using APIs. Medium logical
complexity tasks include most LeetCode problems, finding inputs to fuzz simple programs, and
reasoning about execution behavior of multithreaded programs. High logical complexity tasks
require meticulous and challenging levels of algorithmic and logical reasoning, either because
the algorithm is complex or because the problem requires clever thinking and insights. This
includes difficult competition programming problems, writing large thread-safe concurrent pro-
grams, cracking cryptographic ciphers, and solving SMT-like problems. Many popular coding
benchmarks are function-level, medium-high logical complexity, such as APPS (Hendrycks et al.,
2021), CodeContests (Li et al., 2022a), and LiveCodeBench (Jain et al., 2024b).

Level of Human Intervention Measure: Al coding is a collaborative task. Treude and Gerosa (2025)
categorize interactions between developers and Al Each interaction progresses through four phases:



the trigger for the interaction, the Al response describing the system’s output, the developer response
capturing how developers react to the Al response, and the output of the interaction, the exact result.
They characterize these developer-Al interactions into eleven types, including autocomplete code
suggestions, conversational assistance (e.g., asking a question about a codebase), selection-based
enhancements (e.g., refactoring a selected chunk of code), comment-guided prompts (e.g., natural
language to code), check correctness, and more.

We map these interactions to the autonomy taxonomy outlined in Morris et al. (2023)! to define
three levels of human intervention. We distill their six levels of autonomy into three levels: low (No
Al and Al as a Tool), medium (Al as a Consultant and Al as a Collaborator), and high (Al as an Expert
and Al as an Agent). Low autonomy is when the human has full control over the task and uses Al to
automate simple sub-tasks. This might look like writing a codebase with tests while leaving small
function-level snippets for the Al to fill in. Medium autonomy is when there is a similar amount of
human-AlI collaboration, with interactive coordination of goals and tasks. Here, the human and Al
might both suggest refactorings, optimizations during the development cycle. High autonomy is
when Al drives the interaction and tasks, identifying required changes and the changing demands
of the user. The Al would defer to the human only when needed or for a final check, write the
code and tests autonomously.

Next, with our taxonomy of measures in place, we turn to the set of tasks that are reflective of the
tasks and capabilities of a human software engineer. We give a brief description of each task in this
section, deferring a more extensive survey to Appendix A.

2.1 Code Generation

Code generation is the task of generating code from a specification. In code completion, the
specification takes the form of a preexisting code snippet, and the goal is to complete the snippet.
The most popular form of code completion is tab completion, where the user can press the tab key
to complete a block of code (e.g. GitHub Copilot). Tab completion is often done at line-level or
function-level scopes but needs to be fast to provide users with a seamless experience. Another
paradigm is natural language to code, where the specification is a natural language description with
requirements such as the task description, input-output examples, or libraries to use.

Recently, Al-driven IDEs, such as Cursor Composer and Codeium’s Windsurf Editor, have blurred
the lines between the two paradigms. With the ultimate goal of decreasing the burden of human
programmers, they aim to automatically infer the user’s intent from the code context and user
behavior (e.g. keystrokes, user edits, file navigation patterns). However, when intent is vague,
they allow users to specify desired functionality via chat interfaces. Depending on scope and
logical complexity, code generation can vary highly in difficulty. Reliable code generation in large
codebases is still a challenge for state-of-the-art Al systems today.

2.2 Code Transformation

2.2.1 Code Refactoring

In code refactoring, the goal is to take a working implementation of a piece of software and rewrite
parts of it while maintaining correctness. One challenge with this task is that success extends beyond

'We follow page 9, Table 2 from their paper
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functional correctness or metrics. The goal is often to improve code maintainability, readability, or
extensibility—qualities that can be inherently difficult to quantify and highly context-dependent.

For instance, extracting shared functionality into helper methods presents trade-offs between
modularity and cognitive complexity (Parnas, 1972). While there are no hard rules for when to
extract functionality, one heuristic adopted by software engineers is the rule of three (“three strikes
and you refactor”)-abstractions should only be used when a piece of code has been duplicated
thrice. Because it can often be unclear what level of abstraction refactorings should be done at,
completing a refactoring at a high autonomy level is also difficult. These challenges are further
compounded by the need to understand implicit trade-offs customized to specific codebases, respect
conventions, and reason about the long-term maintenance implications of structural changes. While
code refactoring often has a low logical complexity, it can be laborious in practice due to scope, as
seemingly small refactors can propagate across the entire codebase.

Example: React Fiber architecture refactor: React’s major refactoring was motivated by per-
formance limitations in the original engine, particularly for complex Uls with animations
and dynamic updates. Beyond challenges related to optimized implementation, a major
challenge was providing backward compatibility while completely rewriting React’s core
algorithm. Being an open source tool, this refactor also required educating developers about
new concepts without disrupting existing mental models highlighting nuances in real-world
software system design.

2.2.2 Code Migration and Translation

An incredibly resource-intensive (time and manual effort) task frequently affecting companies is
migrating large amounts of code while preserving all the original functionality and semantics. Such
high-value migrations present opportunities for Al-assisted automation to reduce cost and manual
effort. Code migration often has a very high scope (many files and systems affected alongside
their interdependencies) and high logical complexity (semantic depth of required transformations,
constructs in different languages may be different). Current solutions may excel at migrations
with high scope but modest logical demands (API migrations, type conversions) but struggle with
changes across component boundaries (Nikolov et al., 2025).

A special case of code migration is code translation (transpilation): rewriting code from a source
language to a target language. In industry, this task can be motivated by several reasons, such
as security and scalability concerns in legacy languages, avoiding the technical debt a project has
accumulated over the years, and improving the performance of a codebase. Due to the safety-critical
and cross-system nature of many migrations, this task often requires substantial human oversight
in practice and cannot be done fully autonomously.

Example: Scala version migration: A recent Scala 2.13 to 3 migration (Ricadat, 2025) illustrates
these challenges, documenting a year-long effort. Critical issues included the loss of macro
annotations, broken type projections, incompatible libraries, and compiler performance
degradation—all requiring innovative workarounds and architectural changes. There have
been many similar language migrations with analogous problems, famously Python 2 to 3
and Swift 4 to 5.



Example: COBOL: COBOL powers 80% of in-person financial services transactions and 95%
of ATM swipes while processing $3 trillion in commerce a day, with over 220 billion lines
of COBOL code in production (Taulli, 2020). However, there are less and less COBOL
programmers, leading to the desire to migrate out of COBOL and into a modern language
like Java (Sneed, 2001; Sellink et al., 2002; Sneed, 2010). However, because of the large scope
and high logical complexity of existing COBOL code, migrating from COBOL to Java would
be a monumental undertaking and many companies opt to continue using COBOL. These
companies are still forced to migrate to newer versions like COBOL V6, because eearly
versions of COBOL were gradually withdrawn from service. This task still requires skilled
COBOL engineers and high precision, as it can often be difficult to understand the business
logic of legacy code and introducing bugs can have dangerous implications.

Example: Twitter migration to improve latency: Twitter” built its initial platform using Ruby on
Rails, facilitating rapid development. However, as the user base expanded, performance and
scalability issues arose. They migrated key components to Java and Scala, achieving a 3X
latency drop. This transition required re-architecting the system to adapt Ruby’s dynamic
features to the statically typed environments of Java and Scala, exemplifying the complexities
of large-scale code translation.

"https://www.infoq.com/news/2012/11/twitter-ruby-to-java/

Example: C to Rust: There has been a push to use translation as a proactive approach to elimi-
nate memory safety vulnerabilities in C-based systems. This has even garnered attention
from the US Department of Defense”, which has long-lived systems that disproportion-
ately depend on C, supporting programs to translate C codebases to Rust (TRACTOR).
Recent efforts like Syzygy (Shetty et al., 2024), C2SaferRust (Nitin et al., 2025), and Alpha-
Trans (Ibrahimzada et al., 2024) have shown the potential for hybrid approaches combining
LLMs with traditional program analysis techniques. However, some significant challenges
remain, including ensuring correctness in large codebases while maintaining desirable
attributes such as speed, reduced vulnerabilities, and idiomaticity.

"https://www.darpa.mil/news/2024/memory-safety-vulnerabilities

2.2.3 Code Optimization

Transforming programs to improve performance characteristics while maintaining functional
correctness is a critical software task. Optimizing real-world systems poses significant challenges
due to the large scope and high logical complexity of the task, as performance bottlenecks must be
identified and new algorithms to mitigate them must be proposed. Code optimization often has
a large search and solution space with competing objectives like speed, memory efficiency, and
readability, for example when optimizing kernel code at the PTX level for GPU-based AI model
optimization (Zhao et al., 2025; Ouyang et al., 2025). In many scenarios, high levels of autonomy
may not be desirable, as tradeoffs can depend heavily on external factors such as hardware, and
the best optimizations may ultimately affect readability.
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Example: Google Chrome performance improvements: For over two decades, changes to
the Chrome web browser have been an exemplar of optimization affecting real-world
code (Chromium, 2018). Their V8 engine achieved a 20x performance improvement through
coordinated optimizations across multiple layers - from implementing concurrent garbage
collection that reduced bloat by 100x to developing specialized compilers like TurboFan
that improved performance by 5-10%, to enabling background parsing and compilation that
reduced compile time by 20%. The demand for cross-layer and low-level code changes (e.g.,
writing a new JavaScript interpreter) and building tools to measure and test representative
performance metrics are key challenges for achieving this sort of real-world impact with
LLMs.

2.3 Software Testing and Program Analysis

In the process of software development, there will inevitably be bugs. The difficulty of detecting
these bugs can vary depending on their scope and logical complexity. For LLMs, minor typos or
correctness bugs (small scope, low logical complexity) are easier to spot (Mosolyg¢ et al., 2021)
while complex concurrency bugs and security vulnerabilities (large scope, high logical complexity)
can be tricky because they can be hidden deep in the call stack, contain subtle logic errors, or be
hard to isolate due to the large scope (Trent and Li, 2025).

2.3.1 Software Testing

Software testing is a practical approach to prevent bugs, both during development and production.
There are several popular approaches to software testing, some short-term and others longer-term.
Unit testing refers to using input-output style tests that exercise the functionality of a piece of code.
Property-based testing is based on formal specifications and relies on specifying test cases that ensure
that known properties of the code hold. Mutation testing modifies a program subtly and ensures
that the test suite can detect errors in these mutations. Fuzzing refers to executing programs with
unexpected inputs and monitoring for exceptions, usually over a more extended time period.

Example: OSS-Fuzz on FreeType: OSS-Fuzz (Chang et al., 2024), Google’s automated fuzzing
infrastructure, has proven its value by swiftly uncovering security flaws in critical software.
For instance, when a recent source change was made to FreeType—a font rendering library
deployed on over a billion devices—OSS-Fuzz detected a heap-buffer-overflow within hours:

ERROR: AddressSanitizer: heap-buffer-overflow on address 0x615000000ffa
READ of size 2 at 0x615000000ffa thread TO
SCARINESS: 24 (2-byte-read-heap-buffer-overflow-far-from-bounds)

#0 0x885e06 in tt_face_vary_cvtsrc/truetype/ttgxvar.c:1556:31

The goal of software testing is to design tests that can surface bugs reliably. This is evaluated
through metrics such as code coverage-how much of the source code is executed when the test suite
is run. An alternate to code coverage is mutation score, where mutants are generated, and the score
is defined as the percentage of mutants causing the suite to fail. While practical, software testing
faces challenges such as the scalability limits of traditional tools and the difficulty of manually
designing tests with good coverage. As LLMs continue to improve at coding, they present a
promising avenue for automatically generating high-quality tests.



Example. Fault-based test generation at Meta: Meta’s Automated Compliance Hardening (ACH)
system (Foster et al., 2025) is a system that generates tests aiming to catch real-world bugs.
ACH works in three steps: first, the engineer describes the bugs they are worried about.
Second, ACH combines LLMs with mutation testing to generate code with those bugs.
Finally, these mutants were used to develop unit tests capturing them. ACH was used to
generate tests for Messenger and WhatsApp, where engineers accepted 73% of its tests.

2.3.2 Program Analysis

While testing catches bugs, the most challenging software issues are security vulnerabilities and
zero-day exploits, from memory corruption to privilege escalation. This requires a deep program
understanding, that testing/fuzzing often misses. For instance, a zero-day is a vulnerability
unknown to the software developers that is found by an attacker, and there is no patch available
from the vendor. In such cases, the only practical approach is offensive security research, manual
source code audits, and root cause analysis of prior vulnerabilities to harden codebases.

Example: Variant Analysis: Project Zero’s (Hawkes, 2019) investigations at Google reveal that
many in-the-wild 0-day exploits aren’t entirely new—they’re often variants of vulnerabilities
that had been patched before. In their analysis of recent 0-day reports, nearly half of the
issues were closely related to earlier bugs (such as those affecting Windows win32k and iOS
IOMobileFrameBuffer). This finding underscores the importance of performing rigorous
root cause and variant analyses. Instead of just fixing a single exploit path, security teams
must comprehensively address the underlying bug class, ensuring that alternate exploitation
routes are closed off for good—making this task more challenging.

Another example of a valuable but challenging analysis is invariant detection. A program invariant
is a property of a piece of code that is guaranteed to be true at a specified program point, no matter
what the input is. A simple example is that after the line int x = ¢ * c; is executed, x must
be nonnegative. Identifying invariants in a program can be useful when testing, debugging, and
modifying code. This task can be challenging because it requires reasoning abstractly about code
execution across many different potential inputs and execution paths to determine what properties
must hold for all possible inputs.

2.3.3 Program Repair

Bug localization is a significant challenge in program repair, as pinpointing the exact site of a bug
can be challenging, especially in large codebases. Issues like out-of-memory accesses often manifest
themselves further downstream, making it difficult to identify the root cause. Once the bug is
localized, the next step is to repair the bug. LLMs can be an ideal tool for this because they have
seen a wide variety of bugs during training. Function-level, low-logical complexity bugs can often
be easily fixed by feeding back error information to the model. It can be tricker to perform repair
in larger scopes (e.g. repositories) where the code has higher logical complexity. This can often
require several steps, including designing and implementing new algorithms or making complex
refactorings across multiple files.

10



2.4 Software Maintenance
2.4.1 Code Documentation and Summarization

To ensure maintainability, readability, and ease of collaboration, code must be well documented.
Good documentation needs to be written cleanly and crisply, describing what the function does
and how the function works. It must also anticipate and address any misunderstandings that
a programmer might have, such as potential side effects or special cases. Humans often see
documentation as a chore and neglect it, leading to code and documentation frequently being
out of sync. This has led to the concept of “self-documenting code”, code that clearly conveys its
purpose. As documentation is generally a task that has a low logical complexity and does not
require too much human intervention, LLMs can help ensure that documentation is a continuously
updated artifact in sync with the code.

2.4.2 Pull Request (PR) Review

Reviewing pull requests is an integral aspect of the software development cycle. While the most
essential requirement for PRs is that a new feature is implemented correctly, other important
considerations include checking whether the repository’s style conventions are satisfied, ensuring
that the PR does not introduce any new bugs, verifying that program invariants and guarantees
still hold, and inspecting whether tests are robust. Generally, reviewing PRs is a task requiring low
logical complexity and can be automated relatively easily.

2.4.3 Code Understanding, Navigation, and Question Answering

When encountering a codebase for the first time, developers often find it challenging to understand
and develop a good mental model of the code. This can be due to many reasons: too many wrapper
functions, excessive error-handling boilerplate, deep call stacks, or poor code cleanliness. One
important challenge in code understanding is code navigation: finding where relevant functionality
is implemented. Doing this well requires understanding the high-level layout of where every
functionality lies in the codebase and the low-level understanding of which helper functions are
used to implement each functionality.

Another challenge is code question answering: answering complex questions about a codebase, which
requires sophisticated code understanding and reasoning abilities. Models should not hallucinate
or give incorrect information that skews a developer’s mental model of the code. Beyond other tasks
mentioned in this section, developers might commonly ask questions related to data flow (when
and where data structures get mutated), code functionality (whether there are any side effects),
performance characteristics (determining the runtime and memory complexity of a function), or
error handling (whether certain corner cases are handled).

2.5 Scaffolding and Meta-Code

For a software system to work, the core logic must be written well, but that is not enough. Many
infrastructural aspects must be in place to support the software. We group these into two main
categories: scaffolding and meta-code. We define scaffolding as a task outside of the code that must
be done to get the software running properly. Examples of scaffolding include setting up Google

11



authentication, subscribing to APIs, managing file storage, and generating API tokens. In contrast,
we define meta-code to be code that is important to make the system work but does not actually
participate in the execution of its main logic. Examples of meta-code include test harnesses,
configuration files, CI/CD code, Makefiles, Dockerfiles, sandbox databases, and preprocessors.
Scaffolding and meta-code often are small in scope and have low logical complexity but can require
a lot of domain-specific knowledge about the application, requiring human intervention.

Example. Configuration validation: Ciri (Lian et al., 2024) is a tool that uses LLMs for configu-
ration validation on open-source projects including Django, PostgreSQL, and Redis. They
find that while Ciri excels at detecting misconfigurations of syntax and range violations, it
struggles to detect dependency and version violations and is limited to a narrow range of
misconfigurations. They also find that LLMs are biased towards more popular configuration
parameters, which may lead to hallucinations in out-of-domain scenarios.

Infrastructure-as-code and Security. A particularly challenging case is generating Infrastructure-as-code
such as Terraform, where you specify the type of infrastructure specifications (such as AWS EC2
instances, Kubernetes clusters, S3 buckets, VPC buckets) as code and execute it to create the
infrastructure. When generating such code, LLMs struggle with security configurations due to the
complex interplay between service-level permissions (e.g., AWS resource access), resource-level
permissions (e.g., specific allowed actions), and provider-specific security primitives like IAM roles,
security groups, and network access controls.

Example. Distinguishing permission levels in cluster setup: Terrateam (2024) show that on a task
of bringing up a cluster, models fail to distinguish between ECS (Amazon Elastic Container
Service) Task Execution Roles (for container operations) and Task Roles (for application-level
permissions). This resulted in overly permissive policies where a single role was granted both
image pull permissions and DynamoDB table access, violating principles of least privilege.

2.6 Formal Verification

The task of formal verification involves generating checkable, mechanized proofs that can guarantee
that a piece of code works as intended. There are two major classes of formal verification: full
functional verification (FFV) and property verification (PV). In FFV, the goal is to design a complete
and precise formal specification that captures the desired behavior of the implementation, such as
fully verified data structures (mutable lists, trees, graphs, hash tables) (Zee et al., 2008). The main
challenge in full functional verification is in correctly writing the specification so that all desired
properties are specified. FFV generally has a high scope and medium logical complexity, as the
properties to verify are often straightforward to write once the correct abstractions are found.

While FFV provides a complete set of guarantees, it is usually sufficient to opt for PV, where a
few key properties of a system are proven correct. Examples include: ensuring that two threads
do not simultaneously enter a critical section of a program, verifying that a complex program
will always terminate, proving the absence of security vulnerabilities like buffer overflows, and
guaranteeing memory safety. One challenge that makes PV difficult to use in practice is the issue
of false positives, where functionally correct code often does not pass property checks. A prime
example is Rust: while the powerful type system enforces many desired guarantees, code with
correct semantics often does not pass type checks. Another challenge is that many standalone
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tools for PV are often semantics-dependent, which can make them hard to maintain as language
semantics change.

Example. Costly disasters: Formal verification of software is important in mission-critical
applications such as aircraft software, as software bugs may lead to costly disasters. In the
maiden flight of the Ariane 5 rocket, a floating-point conversion error caused it to explode
forty seconds after liftoff. Another case is with the computer-controlled radiation therapy
machine Therac-25, where concurrency bugs led to six people being massively overdosed,
leading to serious injury and deaths.

Example. Verified Compiler: CompCert (Leroy et al., 2016) is a formally verified optimizing
C compiler that supports a restricted subset of C including most of the ISO C 99 language.
CompCert has been formally verified using the Coq proof assistant (The Coq Development
Team, 2024), eliminating the potential for compiler bugs.

While formal verification tools have begun to see adoption in industry, they has not yet become
mainstream because of these challenges. Code LLMs could greatly ease this burden and make it
more feasible to verify code at larger scales, especially verifying properties requiring lower logical
complexity.

Example. Property Verification: Coverity: Coverity is a static analysis tool meant to find generic
errors (memory corruption, data races) and system-specific violations (e.g. function-ordering
constraints). In their report (Bessey et al., 2010), they highlight two issues mentioned earlier:
churn and false positives. The first issue, churn, deals with ensuring that the tool produces
the same result both when the code base is modified and across different versions of the
tool, making upgrades “a constant headache”. The second issue is that when the false
positive rate is more than 30%, users ignore the tool and real bugs get lost among these false
positives.

3 Challenges

While the field of Al for code has made fruitful progress, cutting-edge Al still struggles with SWE
tasks, especially at larger scopes and higher levels of logical complexity. Next, we discuss ten key
challenges in Al for code. Each challenge spans multiple tasks, and progress on any can lead to
improvements on many tasks at once.

3.1 Evaluation and Benchmarks
Today’s code LLM evaluations focus on a narrow set of tasks, suffer from potential

contamination, and do not reliably measure real-world software engineering abilities.

Potential solutions: 4.1
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Our taxonomy of tasks and measures highlights some of the shortcomings of today’s evaluations
and benchmarks. For example, the majority of today’s coding evaluations have no level of human
intervention, with a few, such as Copilot-Arena (Chi et al., 2025), having low to medium autonomy.
HumanEval, MBPP, APPS, CodeContests, and LiveCodeBench are all at function-level scope,
with low to medium-high logical complexity. Commit0 (Zhao et al., 2024), SWE-Bench (Jimenez
et al., 2024), TestGenEval (Jain et al., 2024a), RefactorBench (Gautam et al., 2024), SWE-Lancer
(Miserendino et al., 2025) are at project-level scope with low to medium logical complexity.

Task Diversity and Capability Isolation: Current coding evaluations primarily focus on the code
generation task, while most of the tasks discussed in Section 2 are either not studied such as Code
QA or only studied in limited scopes like EvalPerf (Liu et al., 2024c), vulnerability detection (Mei
et al., 2024), formal verification (Sun et al., 2024a). As more agent-based approaches are introduced
for software engineering (e.g. pairing a code generation model with a debugging model), these
engineering-related capabilities beyond just code generation will be important towards designing a
maximally performant system. Solely relying on end-to-end coding evaluations that focus on the
overall correctness of a codebase makes it difficult to precisely measure progress and learn from
the failure modes on individual tasks.

Contamination: Data contamination is a serious issue that, if not taken into account, can affect
the soundness of various conclusions drawn from a set of benchmark results. In coding, the
performance of LLMs on competitive programming (Xu et al., 2024a; Jain et al., 2024b) and
SWE-Bench (Aleithan et al., 2024) tasks has been shown to degrade over time, indicating the
possibility of older problems being contaminated due to public exposure on the internet. For
simpler function-level HumanEval style problems, Matton et al. (2024) suggest three potential
causes of contamination: direct data leakage (benchmarks are on GitHub), synthetic data leakage
(there are only a limited number of interview problems), and overfitting to test sets (benchmark
hacking). In addition, for code, contamination can be hard to detect, as semantically equivalent
code that is syntactically distinct could be thought of as contamination (Riddell et al., 2024). A
recent benchmark, the Konwinski Prize?, is a promising way to fairly evaluate SoTA LLM models
by only using new GitHub issues.

Construct Validity: Construct validity refers to how closely a measurement reflects the underlying
concept. Given the implications of rapid performance improvement in the Al for the code domain,
it is essential to have high-construct validity benchmarks evaluating how well programming agents
can perform. While benchmarks like SWE-Bench come close, user experiences do not currently
match rapid performance gains obtained from them. This is partially because many desiderata in
software engineering cannot be described cleanly via automated unit testing. Things like multi-
turn code generation, designing an Ul, and writing clean and idiomatic code are all difficult to
quantitatively measure with precision. Designing reliable proxy metrics for these desired goals
remains a challenge.

2https://www.kprize.ai/
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3.2 Effective Tool Usage

While software engineers use a wide suite of programming tools when programming, most
of today’s Al coding systems do not invoke tools. Al needs to be able to select which tool to
use, decide how to use it, and interpret the outputs in order to continue making progress on
the task.

Potential solutions: 4.3.3

Software engineering has witnessed the development of various open and proprietary tooling
support for programming, debugging, analysis, and code management over time. For example,
program analysis tools provide static and dynamic assurances on code correctness. Print statements
and debuggers are used for dynamically analyzing and debugging programs at a fine-grained
level. Beyond programming, such tools are richly integrated into the entire software development
lifecycle, e.g., code navigation or search, reviewing code, CI testing.

There have been efforts combining LLMs with tools such as calculators and search engines (Schick
et al., 2023; Patil et al., 2023). However, effective integration of LLMs with software engineering
tools is a more challenging problem. Several early works have incorporated such tool feedback in
code generation in an automated fashion, for example, linter or execution feedback in (Olausson
et al., 2023; Zhong et al., 2024b; Gehring et al., 2024). However, these works do not actively interact
with tools. More recently, programming agents have started incorporating tool use within their
workflows termed as Agent-Computer-Interface (Yang et al., 2024b). These tools range from aiding
in general search (grep), providing code editor for making changes (Wang et al., 2024g; Anthropic,
2024), language server for static analysis (Liu et al., 2024f), dependency analyzer (Bairi et al.,
2024), terminal access for bash commands including code execution (Yang et al., 2024b), debugger
(BigSleep, 2024).

Dynamic and Effective Tool Usage: While many efforts combine LLMs and agents with tools,
they do not achieve fully dynamic and effective software engineering tool usage. This involves
an Al system seamlessly and proactively integrating appropriate tools depending on the task at
hand. There are a few challenges towards achieving this goal. First, the Al system must identify
which tools could potentially be useful for the task at hand. Second, the system then needs to
decide when to invoke the tool. A complex debugging task might require the use of pdb or gdb to
track intermediate program states, while looking at input-output pairs may be sufficient for simple
debugging tasks. Third, the agent then must figure out how to invoke the tool. If the agent knows
that a certain function in a program has an error, it may wish to walk through only that function
instead of the entire code from start to finish. Finally, the agent needs to incorporate the output
provided by the tool in order to inform its next steps, e.g. edit the code if a bug was uncovered or
run the tool again otherwise.
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Example: Performance Instrumentation: A common way to instrument software systems
is known as compiler-inserted program instrumentation. CSI (Schardl et al., 2017) is a tool
that inserts instrumentation hooks to track objects such as memory loads/stores, function
entry/exits, and basic blocks. CSI contains tools like code coverage tools, a memory-
operations counter, a performance profiler, and a call-graph generator. To use the tool, the
user must follow the API in order to write hooks so the correct aspects can be profiled.
Tools like CSI are very valuable when trying to improve the performance of a piece of code,
but are not trivial to use. In order for an LLM agent to use CSI effectively, it must first
familiarize itself with the CSI API. Then, it needs to know exactly which aspects of the code
to instrument, such as placing hooks before and after a function suspected to be a bottleneck.
Finally, the agent needs to learn how to use the output of the tool to inform its approach to
the task, such as deciding whether a block of code can be further optimized after seeing its
performance profile.

3.3 Human-AI Collaboration

Human-AlI collaboration is still far from seamless. First, specifications written by humans
are often vague and leave out many details, leading LLMs to produce code misaligned with
humans. There is also very little controllability with coding LLMs, and today’s human-AI
collaboration interfaces are still limited.

Potential solutions: 4.1.2,4.2.3,4.3.4

While Al coding systems are increasingly more powerful, the majority of them are still at a low
to medium autonomy level, serving as engineer assistance rather than achieving high or full
automation. We identify a few key challenges of today’s Al coding systems that prevent these
systems from working with humans effectively at higher levels of autonomy.

Vague Specifications and User Misalignment: When using code LLMs or coding agents, we
typically prompt them with a natural language specification. This can include a natural language
description of the desired code, input-output examples, relevant code snippets, and other functional
requirements. However, there is a gap in the level of abstraction between English and code, leading
to incomplete or ambiguous specifications. This issue becomes more pronounced in longer
programs, where the number of ambiguous decision points increases, and choices traditionally
made by humans are instead implicitly embedded in the LLM’s generated code. Consequently,
users often experience misalignment due to vague specifications. While many code LLMs support
multi-turn interactions, it remains inherently challenging for users to articulate their thought
processes into follow-up natural language instructions.

Specifications beyond text: While today’s specifications predominantly rely on text, there are many
domains for which pure text is insufficient as a specification. In domains like robotics, virtual
reality, embedded devices, and user interfaces, specifications often need to be multi-modal (e.g.
showing the model a picture of an Ul to create) and world-interfacing (e.g. providing simulation
code describing a robot will interact with its environment).

Inherent trade-offs in software development: Designing large software systems always surfaces trade-offs
between various desiderata such as readability, scalability, performance, maintainability, reliability,
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security, etc. These trade-offs are often context-dependent. A long-term and rapidly moving project
may be willing to trade off some performance to have simplicity and readability. Performance-
critical applications may completely sacrifice readability to eke out every millisecond of speed (such
as using bit-twiddling hacks). Finding the sweet spot among these trade-offs can often involve
extensive prototyping and benchmarking to understand the performance characteristics of different
approaches. However, user specifications in the initial prompt rarely include details about these
trade-offs, nor do models often take them into account.

Implicit constraints: Aside from functional/semantic correctness, there are also often implicit
constraints in writing code. For example, many companies such as Jane Street and Google have
style guides, and many GitHub repositories explicitly outline style elements that new code ought
to follow. Zou et al. (2019) find that GitHub pull requests that are more consistent with the style of
the existing code get merged faster. Additionally, corporations may enforces codes of conduct or
compliance requirements at the code level. Furthermore, codebases follow common programming
patterns or system design patterns that are implicitly specified by the way the current code is
written. However, when using code LLMs, these constraints are often inferred incorrectly (Wang
et al., 2024h).

Example: Serializer-Deserializer pattern for objects: Consider the issue astropy-#14181 from the
astropy Python library. The issue requests support for a new input file format (reStructured-
Text) to load astronomical data into the codebase more flexibly. While the issue does not
mention it explicitly, as per common practices, developers implement read (deserializer) and
write (serializer) operations when implementing support for a new file format. This ensures
data can flow bidirectionally between the file format and the application’s internal data
structures. However, models evaluated on this issue, as part of the SWEBench benchmark,
only implemented the read method.

Lack of Controllability: When using Al coding systems, programmers often seek specific func-
tionality, yet they lack reliable ways to steer LLMs toward generating precisely the desired code.
Instead, they typically rely on a trial-and-error approach, repeatedly sampling outputs or providing
feedback until the Al produces an acceptable solution. Consequently, significant human effort is
still required to review and modify the code to ensure it meets the intended functionality (Weisz
et al.,, 2024).

A way to improve controllability is for Al coding systems to recognize when human input is
needed and communicate effectively—yet this remains the top-reported challenge in human-agent
collaboration (Shao et al., 2024a). LLMs rarely defer to humans for clarification, while developers
often ask questions to clarify the description of a task provided by their peers. For example, when
a product manager refines a requirements document, developers who are unclear about the scope
or specifications ask questions and leave comments, which the manager resolves iteratively to
disambiguate requirements (Nahar et al., 2022). Based on its knowledge of existing software, Al
should be able to incorporate implicit priors from a specification while keeping the user in the loop.
For instance, when designing an academic website, certain expectations—such as including a list of
publications and contact information—are implicit. However, whether to include a person’s GPA
would require explicit clarification.

Restricted Human-AI Interface: Existing interfaces for code LLMs primarily manifest as intelli-
gence features embedded within integrated development environments (IDEs). Treude and Gerosa
(2025) establishes a taxonomy of developer-Al tool interactions, emphasizing low-level support
mechanisms such as auto-complete suggestions, selection-based enhancements, and conversational
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assistance within the codebase context. While this taxonomy comprehensively covers existing
Al coding systems that function primarily as engineering assistants, its applicability becomes
questionable as these systems advance toward higher levels of automation. For instance, the
ubiquitous “Tab” interaction paradigm prevalent in intelligent IDEs may prove inadequate when
Al systems transition from completing developer-scaffolded functions to authoring the majority of
the codebase autonomously.

Current interfaces for coding agents, such as Devin, typically stream raw actions without adequate
context or explanation. Given that these agents can execute numerous actions rapidly, developers
face significant challenges in effectively monitoring the process, implementing timely interventions,
or reasserting control when necessary. This lack of transparency can also undermine trust in
Al-generated code (Wang et al., 2024e). While human-Al interface design has received extensive
attention in autonomous vehicle research (Benderius et al., 2017; Tinga et al., 2022), similar
consideration for Al coding systems remains notably absent.

3.4 Long-Horizon Code Planning

Large software engineering projects often require long-term planning about the design and
structure of the code. LLMs struggle at two key aspects of this: designing good, lasting
abstractions and respecting modularity and code quality principles.

Potential solutions: 4.2.1, 4.3.2

When working on large projects, engineers and tech leads often make complex decisions about
how to design and structure the code to best support the various functionalities that will eventually
be needed. To build a long-lasting software system, an engineer must know the potential paths that
the system’s evolution might take. This requires domain expertise and experience in how different
code structures require different forms of extension. We believe that today’s language models are
unable to perform this level of sophisticated planning.

Designing Good Abstractions: One instance of long-horizon code planning is choosing the right
abstractions from the outset. An API designed with good abstractions will allow new features
to be implemented seamlessly with minimal user overhead, while an API designed with poor
abstractions may lead to excessive code duplication, refactoring, or even debugging. We discuss
two examples of this, library learning and data representation.

Library learning: Designing APIs and libraries are designed with useful abstractions often leads
to more code reuse and more intuitive interfaces. The challenge of library learning is to derive
a library of useful abstractions from a corpus of programs by abstracting out common reusable
features (Ellis et al., 2021; Stengel-Eskin et al., 2024; Bowers et al., 2023). While the traditional
library learning literature has focused primarily on code reuse, a truly effective library must also
prioritize ease of use and maintainability, as well as be robust and adaptable to future extensions.

Data representation: The choice between data structures leads to a variety of trade-offs when it
comes to performance aspects such as memory usage and processing speed. For example, database
engineers need to decide between various data models, storage formats, and indexing methods to
balance performance.
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Example: Database Design for Web Applications: Database engineers strive to design their
databases in a way that minimizes memory usage and maximizes query performance (speed).
To achieve this goal, the databases community has spent considerable efforts optimizing both
the high-level data representation and the underlying data structures (Kraska et al., 2018;
Hawgkins et al., 2011). Consider the task of designing a database schema for a restaurant
owner to manage their business: keeping track of customers, managing a rewards program,
maintaining the restaurant’s inventory of ingredients, etc. One important design decision
to make is deciding on a schema: while having a reservation and customer table is fairly
straightforward, should we include a table for customer reviews or simply add rating and
review fields in the customer table? Another important design decision is choosing which
database indexes to include. While choosing the correct indexes can speed up queries
significantly, indexes cost additional memory and must be kept updated. Making decisions
like these requires knowledge of the application, context, and the effects of each option.

Modularity and Code Quality: LLMs are trained and optimized primarily for code correctness
with insufficient focus on other aspects of code like quality and maintainability. This is further
exacerbated with large scale reinforcement learning being performed using test cases which can
lead to unintended consequences regarding code quality, as correct but poor quality code is still
often given a high reward. Empirically, it has been observed that LLM written solutions are often
more complex than human-written counterparts. For example, Jain et al. (2024c) identified that
LLMs prefer to repeat existing code instead of making use of abstractions in the existing code. One
aspect of code quality is modularity, ensuring that code does not get duplicated too often. Here,
Berlot-Attwell et al. (2024) identified that library or tool reuse is non-trivial for LLMs in coding and
formal math domains.

3.5 Large Scope and Long Contexts

Coding is a domain where required context lengths can be very long, as codebases can
consist of millions of lines of code, posing challenges to today’s models. In addition, today’s
retrieval-based methods are still limited: models often retrieve incorrect information and can
still struggle with leveraging retrievals effectively due to the difficulty of code reuse.

Potential solutions: 4.3.1, 4.3.2

Large Scopes: At the repository level, the tasks in Sec. 2 become significantly more difficult and
require many steps. In code generation, user alignment can be an issue because there are many
decision points and tradeoffs that can compound. In code refactoring, modifications will touch
multiple parts of the codebase, and it can be tricky to keep the repository consistent. In code
debugging, functions can be large and bugs can be nested deeply within stacks of function calls. In
code navigation, because there are so many functions interacting in various ways, it can be difficult
to know where each piece of functionality is implemented and how the code is pieced together.

Another issue with large scopes is large context lengths. Software engineering often requires
dealing with very large codebases—for example, Google has repositories with over a billion lines of
code (Potvin and Levenberg, 2016). As this is far too large for modern-day LLMSs, choosing the
correct context to include when using LLMs is important.
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Example: Debugging Cloud Applications: Organizations often rely on monitoring and observ-
ability tools to track the performance of their applications. One such tool is Datadog, an
observability service for cloud applications that can monitor infrastructure, detect security
anomalies, and track database performance. For larger applications with more moving parts,
these logs can consist of thousands of lines of JSON payloads. For humans, sifting through
these logs is usually a matter of searching for certain keywords that they know will appear
in the logs. However, LLMs often have a hard time interpreting large amounts of logs like
these.

Limits of Retrieval-Augmented Generation (RAG): Retrieval-based algorithms have been the
predominant way to deal with long-context coding issues. First, the retriever retrieves relevant
functions. Then, the generator leverages the retrieval to improve generation. While RAG has
proven effective in many NLP tasks such as question answering (Gao et al., 2023; Lewis et al., 2020),
the code domain provides new challenges for these methods.

Retrieval: In most NLP tasks, the retrieval step can be done relatively well because keywords that are
in the query are often keywords that need to be retrieved. Unlike answering NL questions, writing
code often requires drawing inspiration from code snippets that may be completely different
syntactically. This can include programs with similar semantics, algorithms, or API calls, all of
which potentially have very little in common when it comes to syntax. For example, the implemen-
tation of Dijkstra’s algorithm in a GPS navigation application can guide the implementation of a
shortest-path algorithm in a social media application. Because retrievers often rely on syntactic
matching, these relevant programs can be hard to retrieve (Ma et al., 2024; Utpala et al., 2023).

When deciding what to retrieve, it is also necessary to have a sufficient awareness of other parts of
the codebase so that you know which building blocks are necessary to construct the new function.

This can make the retrieval task relatively tricky, as shown by failure modes on two benchmarks,
CodeRAGBench (Wang et al., 2024i) and BRIGHT (Su et al., 2024).

Example: Failure Case of Finding Relevant Files When Resolving Issues: BM25, despite its
widespread use in code retrieval, demonstrates limitations in scenarios that involve large
and complex codebases. For instance, in chartjs__Chart.js-7951 from SWE-bench Multi-
modal (Yang et al., 2024c), BM25 retrieval using the issue description returns subopti-
mal results. The top-3 retrieved files from src/ are src/scales/scale.radiallinear. js,
src/scales/scale.linearbase.js, and src/helpers/helpers.canvas. js. How-
ever, the critical modifications required to resolve the issue should occur in
src/elements/element.bar.js and src/controllers/controller.bar. js. This retrieval
failure impedes the effectiveness of coding agents, many of which are augmented with code
retrieval systems. When agents focus their attention on irrelevant files, their ability to resolve
the issue successfully becomes substantially compromised.

Generation: In NLP tasks, the generation step often is a straightforward application of the retrieved
information. However, in code, writing a new function requires more than copy and paste. This is
closely tied to the problem of code reuse: piecing together relevant snippets of code in a precise and
productive way to fit the current context. Depending on what is retrieved, each piece of retrieved
content provides different information. This can include information about the language’s syntax,
documentation about the API, clues about the algorithm to be written, or examples of similar
functionality being written. Ding et al. (2023) find that even when the oracle context is retrieved,
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LLMs tend to misuse it, highlighting a lack of semantic understanding, which we discuss in the
next section.

Example: Bad Generation Despite Identifying the Correct Context: Ding et al. (2023) high-
lights a failure case where a code LLM fails to complete a Python test case cor-
rectly, even though it has the correct context. The function name from the context,
test_case_convert_camel_to_snake, suggests that the function being completed is a test
case for convert_camel_to_snake. With the given context, the model generates the function
as convert_camel_to_snake, which however does not match the larger codebase as other
pieces of code expect this function name to be camel_to_snake. While this issue can partly
be attributed to incomplete retrieval of relevant information, it also presents a challenge for
code LLMs, as they must recognize such inconsistencies—especially when the immediate
context is correctly provided—thereby avoiding high-confidence errors.

3.6 Semantic Understanding of Codebases

Being able to effectively write code relies on having a strong semantic understanding
(somewhat like a world model) of the entire codebase: structurally seeing how various
parts of the code go together, knowing what is implemented where, understanding how the
algorithms work, and keeping track of program invariants at certain program points. LLMs
struggle with this global semantic understanding

Potential solutions: 4.1

A global and holistic semantic understanding of a codebase is important for performing almost all
code-related tasks. For example, let’s say an engineer is asked to improve the runtime performance
of a query. To do so, they must first understand the codebase’s structure well enough to know
where all the pieces of the algorithm are implemented. Then, they need to understand the
algorithm and implementation in detail. This includes both the high-level algorithm (including
its time complexity) and the low-level implementation details to identify both algorithmic and
implementation bottlenecks. Finally, after coming up with a solution, they must then return to
their understanding of the global code structure so that they can integrate their new algorithm
without introducing new bugs.

LLMs struggle at semantic understanding of codebases for several reasons. First, the way that code
is pieced together can be relatively intricate, and understanding all these complex relationships
can be difficult. Second, code can often have units with high logical complexity that contain
custom algorithms that may never have appeared anywhere in the training data. Finally, because a
disproportionately large number of LLM training tokens are spent on code generation rather than
other coding tasks, models may lack a holistic awareness and world model of code.

One desiderata is that models can generalize knowledge across various coding tasks (Roychoudhury
and Zeller, 2025). However, this may not be straightforward as just training on more tasks: Gu
et al. (2024) found that coding models fine-tuned on additional natural language/code pairs saw
significant improvements on code generation but did not transfer to improving code understanding
and execution reasoning. While there have been successful efforts to augment code LLM training
with execution information to improve general coding capabilities (Ni et al., 2024; Ding et al., 2024c),
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imbuing code LLMs with a general and holistic understanding of code remains an important
challenge today.

3.7 Low-Resource Languages and Specialized Libraries

Models struggle with low-resource languages and codebases with specialized libraries.
Because of the limited exposure they have in these contexts, models fail in a variety of ways
including generating syntactically incorrect code, misunderstanding the semantics of certain
constructs, and using libraries improperly.

Potential solutions: 4.2.2

As we adapt code LLMs to individual codebases, generating correct code in out of distribution
(OOD) scenarios becomes crucial. Much of software development in business contexts revolves
around proprietary codebases, which is a distribution shift from the open-source code that dom-
inates LLM training data (Ahmed et al., 2024a). These OOD scenarios include domain-specific
languages (DSLs), custom internal libraries, low-resource APIs, and company-specific coding styles
and conventions.

Syntactic Failures: Models have been shown to hallucinate constructs from higher resource
languages when working in low-resource languages. Blinn et al. (2024) remark that “contemporary
LLMs fail to follow Hazel’s syntax and semantics, often borrowing syntactic forms and library functions
from [higher-resource languages like] OCaml and Elm”.

Example. Syntax error in Triton: In Listing 3.7, we show an attempt from Gemma-3 27B to
write a dot-product kernel in a low-resource GPU programming language called Triton (part
of docstring omitted for brevity). Gemma uses indexing notation such as a[index], which is
not a valid Triton construct. Models like o1 and 03, however, do not make this mistake.

Q@triton.jit
def dot_product_indexed_kernel(a, b, indexes, out, N):
nnn

Computes the dot product of two vectors a and b using an index vector.

nun

block_size = 64 # Adjust block size for optimal performance
grid_size = (N + block_size - 1) // block_size

block_id = tl.program_id(0)
start = block_id * block_size
end = min(start + block_size, N)
accumulator = tl.zeros(1l, dtype=tl.float32)
for i in range(start, end):

index = indexes[i]

accumulator += al[index] * b[index]

tl.store(out, 0, accumulator)
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Poor Semantic Understanding: In low-resource languages, models have less exposure to the various
language constructs. Therefore, they have a weaker semantic understanding of the language. Many
studies reveal that code LLMs perform poorly when asked to write code in low-resource languages.
Due to the lack of training data in these OOD domains, models may struggle to write common
primitives or piece together functionality coherently. On HumanEval, Qwen 2.5 Coder Instruct
(32B) (Hui et al., 2024) has an accuracy of 83% in Python but only 27% in D2

Library Usage Failures: In OOD scenarios, LLMs lack awareness of the libraries and functions
available for use. In new codebases using custom libraries, many functions appear only a few
times, providing limited training data for Al models to learn their usage. This scarcity can lead to
overfitting, where models fail to recognize an effective use-case of these functions. Models also
frequently hallucinate non-existent functions based on patterns that it infers.

Example. Hallucinating theorems in Lean: In Listing 1, the LLM makes up a theorem named
infinitelyManyPrimes_arithmeticSequence. While the model understands that it should
use Dirichlet’s theorem, the actual theorem is named forall exists_prime_gt_and _eq mod.
This theorem occurs very few times in all of the currently available Lean code on GitHub, so
it is likely that LLMs did not train on it many times.

theorem infinitely_many_primes_of_form_6k_plus_1 :
Von: N, 3p: N, p>n APrimepAJk: N, p=6x*k+1:=by
intro n
-- Use Dirichlet’s theorem for arithmetic progressions
have h := Nat.infinitelyManyPrimes_arithmeticSequence 6 1

Listing 1: LLM-generated Lean code snippet that incorrectly uses indexing notation

3.8 Library and API Version Updates

Software engineering has a unique property that repositories and libraries are constantly
changing. Code LLMs have trouble adapting to these rapid changes, often struggling to use
the correct version of libraries and ignoring new paradigms and features.

Potential solutions: 4.2.2

Continual learning, the idea of training an Al system to take in new information continually, has
been a long-standing challenge in Al and NLP (Wu et al., 2024; Wang et al., 2024d). In software
engineering, codebases are continuously changing as new features are supported and awkward
design patterns are reworked. While backwards compatibility is often prioritized in software
design, it inevitably becomes broken as codebases evolve further. Therefore, programming libraries
have version releases, each release supporting and deprecating features in the last version.

There have been a few works exposing this issue. For example, CodeUpdateArena (Liu et al., 2024g)
and GitChameleon (Islah et al., 2024) are two benchmarks exploring the ability of LLMs to write
version-specific code, examining this issue at the function and file level. They find that language
models struggle to adapt to these changes even with this limited scope. In theorem proving (Lean),
Kumarappan et al. (2024) try to mitigate this by developing a lifelong learning framework that

3As reported by the BigCode Models Leaderboard on the MultiPL-E benchmark (Cassano et al., 2023)

23


https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

continuously learns and uses new theorems. In real-world engineering, the challenge of library and
API versioning generally spans across an entire repository, as everything must be kept consistent.
To our knowledge, there are no techniques that successfully deal with this challenge at such a large
scale. This problem is difficult for a few reasons, which we discuss below.

Version Identification: In order to to successfully deal with version changes, a LLM must first
identify which version of each library is being used in a codebase. This may often be quite difficult,
because versioning information can be hidden deeply within a codebase. Sometimes, it can be
found in comments or configuration files, but in the worst case, it must be inferred from the library
calls being used. To make things worse, some code may be compatible across multiple versions,
while other code will cause errors only in specific versions. Therefore, the model will often require
a deep understanding of both the codebase and the nuances between different versions in order to
infer the version at hand.

Example: Debugging Frontend Code: Frontend framework usually has more frequent versions
update, making it hard for code LLMs to work with. For example, when helping a user
debug the “NextRouter was not mounted” issue, Claude 3.7 tries various solutions without
recognizing that the core problem requires importing useRouter from ’next/navigation’
instead of ’next/router’, a crucial distinction since the user’s codebase leverages App
Router in Next.js 13.

Version Adaptation: Many fast-changing libraries are not backward compatible as older features
become deprecated. It can be difficult for LLMs to implicitly keep track of which constructs and
patterns are associated with each version. Therefore, consistently using constructs from the right
version can be difficult. As we will see in the examples below, LLMs often write code that mixes
and matches API constructs from different versions of the same library.

Example. Typing Hints: While Python 3.5 required importing types from the typing module,
Python 3.9’s PEP 585 enabled direct use of built-in types for generics (e.g., 1ist[int] Vs
typing.List[int]). However, language models tend to default to the older typing module
syntax.

Continuous Adaptation to Paradigms, Features, and APIs: New styles, patterns, and paradigms
are often introduced to replace older, more cumbersome ways to write code. For example, React
came out with its Hooks paradigm in version 16.8 (2019). Over the next few years, developers
transitioned from the old class components paradigm to using hooks, as hooks made code cleaner
and more maintainable. Only in early 2023, with the launch of react .dev, were Hooks the default
paradigm in the documentation. For language models, incorporating these features can take a
long time, because code in these new paradigms are initially completely absent in the training
data and inherently in the low-resource regime. In Kharma et al. (2025), the authors find that
LLMs fail to utilize security features in compiler and toolkit updates (such as in Java 17), still
relying on legacy methods such as insecure random number generation. While it is possible to use
retrieved examples and documentation in order to coerce language models to write code using new
and updated features, we should strive to create Al coding assistants that can quickly internalize
new changes and be able to naturally incorporate new features and paradigms, even without an
abundance of training data. For each task, the language model should be able to reason about the
best way to write the code, independently of the number of occurrences seen in the training data.
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Example. Lean 3 vs. Lean 4: Lean (De Moura et al., 2015) is a programming language
that allows users to write formal proofs of mathematical theorems. In 2017, using Lean 3,
enthusiasts implemented a library for mathematics called mathlib, with over half a million
lines of code. Because Lean 3 had many shortcomings, Lean 4 (Moura and Ullrich, 2021)
was initiated at the beginning of 2021 to address many of these issues. There was a massive
undertaking to port all of the mathlib code over to Lean 4, and only in September 2023 was
there a stable release of Lean 4, the version of Lean that is predominantly used today. The
two versions are generally incompatible. We hypothesize that, due to the recency of Lean 4,
most language models have been trained on much more Lean 3 code compared to Lean 4
code. When asking models to generate code in Lean 4, it sometimes generates code with
Lean 3 coding conventions. Other times, it uses theorems and lemmas from Lean 3 that are
deprecated in Lean 4. In Listing 3.8, we show an example of prompting 03-mini with a Lean
4 problem, where it generates Lean 3 syntax (e.g. begin).

Prompt: Write and prove the following in Lean 4: the sum of the first n positive integers is n

— *(n+1)/2. Begin with "import Mathlib". Surround your Lean 4 code with ‘‘‘lean4 and ‘¢
/-- The sum of the first n positive integers (i.e. 0 + 1 + ... +n) isn *x (n + 1) / 2. -/
theorem sum_first_n (n : IN) : (range (n + 1)).sum id = n * (n + 1) / 2 :=
begin

induction n with n ih,
{ -- Base case: when n = 0, we have range (0 + 1) = {0} and so the sum is 0, which matches 0 *
— (0 +1) /2
simp [range],
Ps
{ -- Inductive step: assume the formula holds for n, and prove it for n + 1.
-- First, note that range (n + 2) = insert (n + 1) (range (n + 1)).
rw [range_succ],
-— Since (n + 1) ¢ range (n + 1), we can ezpress the sum as:
rw [sum_insert (not_mem_range_self (n + 1))],
-- Substitute the induction hypothesis:
rw [ih],
-- We now have to wverify:
—nx*x (n+1)/2+ m+1)=m+1) * (n+2) /2
-- This equality follows by algebra (ring calculation).
ring,

end

3.9 High Logical Complexity and OOD Domains

Tasks such as writing highly concurrent code or discovering performance optimizations have
a high logical complexity, often proving difficult for even the best human coders. Similar to
solving research-level math problems, these out-of-distribution domains are very hard for
LLMs.

Potential solutions: 4.2.1
Some programming tasks are challenging for even the best human programmers, requiring

approaches with a very high logical complexity. Examples of tasks that fall into this category
include superoptimizing programs, discovering attacks for purportedly secure code, writing
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performant compilers, optimizing GPU kernels (Ouyang et al., 2025), and writing very error-prone
and very technical code.

Example. Synthesis of Sorting Kernels: An example of an out-of-distribution domain is
synthesizing fast assembly code for sorting kernels. In 2023, AlphaDev (Mankowitz et al.,
2023b) used reinforcement learning to find a SoTA kernel for sorting length 3-5 arrays. While
this appeared to be a superhuman performance, shortly after, Neri (2023) hand-wrote a
kernel shorter and faster than the one found by AlphaDev. Later, (Ullrich and Hack, 2025)
developed an algorithm based on enumeration and intelligent heuristic-based sampling that
beat both of these. In addition, the algorithm ran faster than AlphaDev by two orders of
magnitude. In this case, while AI was able to achieve an impressive performance, humans
were able to discover better algorithms.

Example: Verifying File System Properties: In formal verification, when working with new
domains, it is necessary to devise new theories to faithfully represent desired properties. For
example, FSCQ is a formally certified crash-proof file system with the provable guarantee
that under any sequence of crashes followed by reboots, FSCQ will recover the file system
correctly without losing data (Chen et al., 2015). In this domain, one challenge is that proving
safety cannot be done at the source code level-because instructions are not atomic, data may
be lost if the crash occurs within a non-atomic instruction. Instead, a new logic known as
the Crash Hoare logic (CHL) needed to be developed, and constructs representing a crash
condition and recovery procedure needed to be described. Constructing a logic like this
would be very difficult for Al systems.

Limits of Symbolic Techniques: When it comes to applying symbolic techniques to these tasks,
there are a few limiting factors that make them difficult to tackle. First, for synthesis-style tasks,
the search space can be very large. Deductive and rewrite-based synthesis techniques are unable to
explore a majority of the search space. Second, verifiers can be limited in power, such as when
dealing with properties in concurrency or weak memory models. Third, many domains lack clean
models to reason about properties, such as dealing with memory bandwidth in GPU kernels.

Because they are hard for humans, these tasks are very rarely in the training data of today’s
language models. They have unique, domain-specific, challenges that making generalizing from
existing data difficult. For these problems, language models rely heavily on feedback-driven search
algorithms (Mankowitz et al., 2023b), and it can be difficult to navigate the search space effectively.
In addition, many of these tasks lack feedback mechanisms, which is crucial for Al to pick up
learning signals. When designing a complex algorithm or data structure, it is often hard to know
if you are on the right track until you get to the correct result. When writing code for a large
multithreaded operation, it may be hard to know if the algorithm has concurrency issues until all
the parts are fully fleshed out. Without feedback, incremental improvement is nearly impossible.
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4 Paths Forward

4.1 Data Collection

One bottleneck in the development of Al for SWE in the open-source community is the
lack of access to fine-grained and high-quality code data. In Sec. 4.1.1, we discuss how
automated techniques can mitigate this by augmenting existing programs with symbolic
information and generating synthetic data with symbolic verifiers. However, there are
other crucial signals in programming that can be hard to automate. We envision that a
large community-based coding data curation effort will be very impactful. In Sec. 4.1.2, we
discuss examples of datasets that such a community could create that would unlock new
capabilities in code LLMs.

Challenges addressed: 3.1, 3.3, 3.6

4.1.1 Awutomatic Data Curation

Augmenting Data with Program Information: One challenge in enabling LLMs to develop a world
model of code is that programs are often treated like text: as tokens with no semantic information.
However, modern programming tools allow us to extract rich semantic and structural information
about code. By leveraging these tools, we can augment training datasets with detailed annotations
describing various properties of programs. We hypothesize that this augmentation will significantly
improve a model’s understanding of code, leading to better generalization and stronger coding
capabilities. Information can include:

e Static analysis: the syntactic structure of a program (abstract syntax trees, control flow graphs),
information about the type of each variable, data flow analysis (reachability, liveness analysis)

® Program instrumentation: memory consumption, runtime analysis, aliasing, and code cover-
age (like statement or branch coverage)

* Dynamic analysis: program states at various points in the program, call stacks, dynamically
curated properties (often relies on instrumentation)

* Formal verification: concurrency analysis, program invariants, loop invariants, memory safety

There have been a few examples of this in the literature: Ouyang et al. (2025) leverage profiler
feedback to improve GPU kernel generation, Ding et al. (2024c,b); Ni et al. (2024) incorporate
execution trace information, Pei et al. (2023) train with program invariants, GraphCodeBERT (Guo
et al., 2020) incorporate data flow information, and Shypula et al. (2023) train on a dataset of
performance-improving edits.

High-quality, Verifiable Synthetic Data: The advantage of code is it is possible to achieve strong,
verifiable feedback with test cases, program execution engines, and other symbolic tools. This
makes high-quality synthetic data generation viable, as it is possible to generate a large batch of
data and filter out low-quality samples. For example, to generate code with interesting program
invariants, we can sample a large batch of programs, run an invariant detection engine, and retain
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only programs with interesting invariants. While synthetic data in code has mostly been at the
function-level scope, there are no fundamental bottlenecks to expanding to larger scopes. As code
is quite compositional, individual building blocks can be combined to generate complex synthetic
data at the repository-level scope, which can be very helpful in both training and evaluation.

While the importance of having high-quality data vs. high quantities of data is debated, using
verified data has proven to be useful. For example, Liu and Zhang (2025) shows that simply
removing bugs in existing datasets such as TACO (Li et al., 2023) can lead to significant boosts.
KodCode (Xu et al., 2024a) also showed that fine-tuning on verified synthetic data also leads to
significant improvements. However, these works work with programs at the function-level scope
with low to medium logical complexity, and we imagine that general SWE abilities can improve
with synthetic data across scopes and logical complexities.

In DSLs, where programs can be cleanly described with semantics and rewrite rules, one can
symbolically generate programs with desired properties via sampling, drawing on enumeration
techniques from program synthesis (Gulwani et al., 2017). This technique has been successfully
applied to make considerable progress in difficult reasoning tasks such as ARC-AGI (Li et al,,
2024d) and math olympiad problems (Trinh et al., 2024; Google, 2024; Chervonyi et al., 2025).

4.1.2 Human-Centric Data Curation

Below, we list three classes of human-annotated data that would be invaluable for the next
generation of coding LLMs.

Fine-Grained Data of the Developmental Process: Many code LMs are trained on datasets such as
the Stack (Kocetkov et al., 2022; Lozhkov et al., 2024), consisting of trillions of tokens sourced from
GitHub. However, training on raw GitHub tokens omits many crucial human signals in the process
of software development. For example, companies such as Google rely on internally captured logs
of high-quality SWE data. This includes “fine-grained code edits, build outcomes, edits to resolve
build issues, code copy-paste actions, fixes of pasted code, code reviews, edits to fix reviewer issues,
and change submissions to a repository” (Chandra, 2024). Similarly, Meta and GitHub Copilot use
telemetry with their Al coding assistants to track and leverage signals from Al-generated code
(Murali et al., 2024; Ziegler et al., 2024). These tools, along with coding IDEs like Cursor, could
provide a treasure trove of reward data for RL-based methods. With direct access to the full history
and evolution of a codebase, they can track which suggestions are adopted over time. However,
collecting data from human usage also raises critical privacy and intellectual property concerns.

Data for Diverse SWE Tasks: Most of today’s code LLM training recipes still focus primarily
on code generation because large-scale datasets are mostly in a continuous, tokenized format.
However, as described in Sec. 2), there are many tasks involved in software engineering which
models lack exposure to. Training on a broader set of tasks would also incentivize models to learn
general capabilities of programs beyond just generation (e.g. a better understanding of program
semantics). As initial evidence, Li et al. (2025a) find that training models on input-output prediction
data leads to consistent improvements on reasoning tasks.

The lack of high-quality data on these tasks makes it hard to train on them. It can also be hard
to automatically curate them on GitHub. For example, for code refactoring (Sec. 2.2.1), we need
paired repositories before and after refactoring, ideally with the refactoring changes described.
While some signal such as commit messages and version releases can be used, many repositories
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lack clean commit histories and releases conflate many features at once. Therefore, to mitigate this,
we envision large community-based efforts curating task-specific data on these diverse challenges.

Human-Centric Data: Code LLMs are typically trained and evaluated on carefully curated datasets
with clear instructions and verifiable test cases. However, as discussed in Sec. 3.3, these models
are often deployed in real-world scenarios where users provide vague specifications or incomplete
requirements in their queries. Collecting human-centric data that reflects real-world model usage
is a promising approach to bridging the gap between model development and deployment. Recent
efforts, such as Copilot Arena (Chi et al., 2025) and WebDev Arena, have explored gamified arenas
to gather data on human preferences, offering an alternative to purposefully curated datasets.
However, such data collection methods may introduce noise, and arena-style approaches are not
well-suited for long-horizon, interactive tasks. One potential approach is to leverage existing coding
tools and environments, such as developing plugins for GitHub Copilot (Bajpai et al., 2024) or
open-source IDEs, to capture real-world interactions. Unlike static datasets, human-centric data
can also be collected encompassing diverse interaction modalities, such as users providing sketches
to Al coding systems for web development (Li et al., 2024c). As Al coding systems continue to
emerge and evolve, launching data initiatives focused on human-centric SWE data is also a crucial
direction for advancing human-AlI collaboration in software development.

4.2 Training

4.2.1 Environment Design for Code RL

Reinforcement Learning from Verifiable Rewards (RLVR) (Lambert et al., 2025) has emerged
as a powerful paradigm in math and coding domains where model outputs can be evaluated
against a ground truth outcome such as exact match and passing a set of unit-tests. Towards
this direction, promising avenues include collecting executable codebase environments,
sourcing task prompts/rewards from GitHub, and designing non-execution based rewards
based on program syntax and semantics.

Challenges addressed: 3.4, 3.9

Collecting executable codebases: In recent months, RLVR has seen success in solving algorith-
mic programming problems through DeepSeek-R1 (DeepSeek-Al et al., 2025) and OpenAl ol.
Recently, on SWE-Bench, SWE-RL (Wei et al., 2025) use RL on a rule-based reward to improve
performance on SWE-Bench. We find it promising to continue scaling the RL approach to prob-
lems collected from real-world software engineering repositories. Towards this, we believe that
collecting execution-assisted gym-like reinforcement-learning environments will lead to further
performance improvements. These environments can be used further to improve reasoning skills,
environment-interaction capabilities and tool usage.

Several prior works (Jain et al., 2024c; Pan et al., 2024; Guo et al., 2025; Xie et al., 2025) curate
executable environments for programming agents by supporting CI/heuristic-based repository
installations. However, these works are at a relatively small scale and limited in scope, offering only
a few thousand tasks from a maximum of a thousand repositories and more importantly, limited to
the Python language. Scaling this up significantly requires solving several research and engineering
problems. First, installing arbitrary repositories from Github, even using CI is challenging and we
require smarter solutions potentially involving LLM-based installation agents. Next, setting up
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execution infrastructure would require storing installed repository images in something akin to
docker for efficient storage and fast container startup times (Team et al., 2025). Notably, combined
docker images can grow massively large and often grow at hundreds of gigabytes even at a modest
scale of a few hundred repositories. They require engineering support for efficient storage and
serving of such images.

Sourcing task prompts and rewards: Beyond environments, performing large-scale reinforcement
learning would require collecting diverse challenging problems with an appropriate way to compute
the rewards. These task prompts can be collected from Github (Pan et al., 2024) or generated
synthetically from problems on Github. Moreover, assuming access to many executable repositories,
we can source various end-to-end problems for tasks beyond bug-fixing such as optimization,
fuzzing, etc. Access to pre-existing or generated test cases allows for measuring correctness and
providing rewards.

However, we envision many practical challenges to remain. For example, longer-horizon tasks are
usually more ambiguous and approaches may require multi-turn interactions beyond autonomous
coding agents. This would pose a considerable challenge during reinforcement learning where
ambiguity resolution might need to be modeled in the reinforcement learning process itself. We
elaborate on human collaboration further in Section 4.2.3. Reward hacking Skalse et al. (2022)
poses another challenge as we build more real-world coding challenges. Test cases often suffer
from coverage issues and can grade correct solutions as incorrect. For example, Baker et al. (2025);
Denison et al. (2024) identified that models attempt to bypass or cheat against the testing harness
when optimized using reinforcement learning.

Rewards without execution: As setting up execution environments can lead to considerable
overhead, another potential strategy is to use proxy metrics and trained language models to judge
correctness. This was common in the pre-LLM era, researchers often used BLEU/CodeBLEU
(Papineni et al., 2002; Ren et al., 2020) and BERTScore/CodeBERTScore (Zhang et al., 2019; Zhou
et al., 2023) to assess correctness of text and code. In code, semantic and structural properties can
be used to improve similarity metrics. Two examples of this are Dolos (Maertens et al., 2022), an
AST-aware plagiarism detector, and difflib.SequenceMatcher, which can be used to compute
the similarity between two patches (Wei et al., 2025; Ma et al., 2025b). Beyond rule-based rewards,
LLMs-as-a-judge approaches can also be used as reward functions, possibly in conjunction with
other execution-based or execution-free approaches.

4.2.2 Adapting to Specialized and Quickly Changing Codebases

Low-resource languages (Sec. 3.7), custom APIs, library version updates (Sec. 3.8), large
codebases (Sec. 3.5), and custom coding styles all surface the fact that code LMs struggle
to adapt to unseen specialized contexts. Customization can be achieved through test-time
training, keeping specialized information in an information bank. A cheaper and alternative
approach to test-time training is to apply prompt and prefix tuning, where codebase-specific
embeddings are learned and applied depending on the context.

Challenges addressed: 3.7, 3.8

Test-time training (TTT) to custom codebases: TTT is the recent paradigm of adapting to a specific
problem instance by training on a narrow set of in-distribution examples (Akytirek et al., 2024;
Sun et al., 2020). This can be used when working in a low-resource context, for example training
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on a specific codebase, new domain, or unseen API. One challenge in this setting is customizing
the model to the particular codebase while retaining general coding knowledge, potentially by
using algorithms that can induce controllable forgetting (Wu et al., 2024). To get data in specialized
contexts, we envision two mitigation strategies: generating synthetic data and collecting trajectories.
In-distribution synthetic data can be generated in large quantities and then filtered and annotated
with symbolic (e.g. compiler) information to gain a more global understanding of the current
environment and setting. To gather agentic trajectories, we can keep track of previous model
attempts and failures to learn from past successes and avoid making repeated mistakes. This will
steer the model closer to the desired distribution—for example, to generate code in the specified
version of libraries being used in the current context.

Keeping an information bank of code information: For library and versioning issues, retrieval
(Sec. 4.3.1) can be very effective for preventing hallucinations of wrong versions of libraries, which
can inherently lead to better synthetic data and agentic trajectories. During the TTT process, we
can also keep a large growing memory bank of code, documentation, synthetic code, and agentic
trajectories in the specialized context. Retrieving from the memory bank would improve the success
of generating code, which can then be augmented to the memory bank, and so on, continuously
increasing the amount of data and knowledge available.

Prompt and prefix tuning for specialized code contexts: One issue that makes it difficult to
continuously keep up with library updates is that doing full finetuning every time something
changes is very expensive. Because only a small amount of knowledge needs to be learned
compared to that of the pre-trained model, we believe less expensive approaches such as prompt
tuning (Lester et al., 2021) and prefix-tuning (Li and Liang, 2021) could suffice. Both these methods
append a set of learned task-specific vectors to the input sequence in order to model a specified
context, though prompt tuning only modifies the input and prefix-tuning modifies the input at each
layer. These methods have also been shown to have good OOD performance, and we believe they
present a promising approach to dealing with multiple library versions. A separate prompt/ prefix
can be trained for each version and then applied according to the context. When an API has
new updates, the prompt/prefix can then be cheaply re-tuned to reflect the new updates without
undergoing full fine-tuning. This approach also applies to adhering to specific coding styles, where
codebase-specific prompts/prefixes can also be learned.

Learning on the fly: When humans are faced with a task they have never seen before, they are
often able to draw from past experiences and quickly adapt and generalize to the new domain. This
is one of the big unsolved challenges of today’s LLMs: given an OOD coding task, how can models
get up to speed and productively work on the task with few samples? On toy domains, an example
of this is DreamCoder (Ellis et al., 2021), a system that learns to solve problems by writing programs
and automatically discovering domain concepts and composing concepts together. Designing such
approaches for more practical applications is an exciting research direction that will have drastic
implications for coding and reasoning.
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4.2.3 Training Code LLMs to Collaborate with Humans

Training the next generation of code LLMs needs to account for human-AlI collaboration,
as these models will likely be deployed in ambiguous and interactive scenarios. We
highlight two key directions for improving collaboration: First, learning to leverage
specifications beyond natural language through formal methods and user-specified tests
can mitigate vague specifications. Second, improving uncertainty quantification and
proactive communication through post-training has the potential to prevent hallucination
and misalignment.

Challenges addressed: 3.3

Learning to Leverage Specifications Beyond Natural Language: As discussed in Section 3.3, while
natural language prompts offer intuitive and flexible ways to express requirements, they often
suffer from ambiguity and incompleteness. One direction to address this limitation is to train
models to leverage enhanced specifications with more precise and verifiable representations, such
as formal specifications and test-based specifications.

Formal specifications: To mitigate underspecification issues, one solution is to develop systems that
can translate user intent into formal specifications (Szegedy, 2020; Endres et al., 2024). While current
autoformalization approaches face challenges in accurately capturing user intent (see example
below), we envision next-generation systems that will iteratively refine formal specifications
through interactive verification with human feedback. These systems would present intermediate
formalizations in accessible notation, enabling non-expert users to verify correctness before code
generation.

Example: Incomplete specification in Verus: Here, we show a failure mode of LLMs when writing
specifications and proofs in Verus. The LLM is asked to write the ensures postcondition
clause for a a ring buffer enqueue function’. Here, the postcondition is incomplete: it does
not check, for example, that the original elements were maintained in the ring buffer.

fn enqueue(&mut self, val: T) -> (ret: bool)

ensures

ret == lold(self).is_full(),
self.inv(),
if ret { self.view() === old(self).view().push(val) } else { self.view() === old(self).

— view() }

{
if self.is_full() {
false
} else {
self.ring.set(self.tail, val);
self.tail = (self.tail + 1) ¥ self.ring.len();
true
¥
}

“Full example here
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Tests as specifications: Another approach to specify software behavior is through tests. These range
from input-output examples and assertions to property-based tests. However, in practice, hand-
crafted test suites are often incomplete, failing to capture the full intended behavior, particularly
edge cases. This can lead to misalignment, where Al-generated code passes tests but does not
genuinely meet functional requirements, potentially misleading users. Moving forward, a direction
is training models to generate high-quality test cases based on the user’s initial query, ensuring
more comprehensive specification coverage.

Example: For instance, in a release of Al CUDA Engineer by Sakana Al, an Al-generated
CUDA kernel for lower triangular matrix multiplication—purportedly achieving significant
speedups—was later found to exploit out-of-bounds memory access to bypass correctness
checks”. Advancing research on frameworks that facilitate test generation and automated
adversarial testing represents an important direction.

“The full LLM-generated kernel code can be found in Listing 3, pg. 46-47 of Lange et al. (2025)

Learning to Quantify Uncertainty and Communicate Proactively: As Al coding systems are
increasingly deployed to complex software engineering tasks, they encounter more ambiguous
and uncertain scenarios compared to traditional benchmarks for coding models. Ideally, in
such situations, these systems should proactively communicate with users to clarify tasks and
acknowledge its own limitations rather than becoming stuck in endless failure loops or generating
buggy code. A key challenge is enabling models to distinguish between well-specified and
ambiguous instructions while quantifying uncertainty in a robust manner. While early studies,
such as Vijayvargiya et al. (2025) and the example below, demonstrate that interactive LLMs can
improve performance through clarification-seeking behavior, current models still struggle with
uncertainty estimation. Equipping models with the ability to quantify uncertainty will likely
require incorporating corresponding reasoning data into the post-training stage.

Besides uncertainty quantification, Shao et al. (2024b) identify communication as a primary
challenge in human-agent collaboration, highlighting the need for improving models’ proactive
communication capability. Current models often fail to ask meaningful questions when user input
is ambiguous or insufficient, and they struggle to provide progress updates or verify plans in
interactive settings. Enhancing models’ proactive communication abilities requires innovative
approaches to reward behaviors that yield benefits over multiple steps. Since communication with
users does not immediately resolve the task at hand but may improve long-term outcomes, effective
strategies must account for delayed rewards in training.

Example: Discussion Helps Coding Agents Resolve Github Issues: In SWE-bench (Jimenez et al.,
2024) pydata__xarray-4750, the original issue description requests limiting the number of
data rows displayed in repr. While it suggests a maximum of 25 rows, it does not specify
whether this number should be configurable—a key requirement that emerged during the
issue discussion. When SWE-Agent (Yang et al., 2024b), powered by GPT-40, uses only
the issue description as the problem statement, it generates a function that hardcodes the
maximum at 25, causing the solution to fail the test. However, incorporating the issue
discussion allows the agent to produce a correct, test-passing implementation (see Listing
2). This suggests that enabling coding agents to engage in discussions with users could
potentially improve the issue solving rate.
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Listing 2: SWE-Agent improves when incorporating issue discussions

# Use only the issue description
def _mapping_repr(mapping, title, summarizer, col_width=None):
if col_width is None:
col_width = _calculate_col_width(mapping)
summary = [f"{title}:"]
if not mapping:
summary += [EMPTY_REPR]
else:
items = list(mapping.items())
if len(items) > 25: # Show first 12 and last 12 items
first = items[:12]
last = items[-12:]
summary += [summarizer(k, v, col_width) for k, v in first]
summary += [" oM
summary += [summarizer(k, v, col_width) for k, v in last]
else:
summary += [summarizer(k, v, col_width) for k, v in items]
return "\n".join(summary)

# Use the issue description and discussion

def _mapping_repr(mapping, title, summarizer, col_width=None):
col_width = _calculate_col_width(mapping)
summary = [f"{title}:"]

if mapping:
items = list(mapping.items())
if title == "Data variables" and len(items) > OPTIONS["display_max_rows"]:

# Show first and last variables if there are too many
first_n = OPTIONS["display_max_rows"] // 2
last_n = OPTIONS["display_max_rows"] - first_n
selected_items = items[:first_n] + [("...", "...")] + items[-last_n:]
else:
selected_items = items
summary += [summarizer(k, v, col_width) if k != "..." else " .
for k, v in selected_items]
else:
summary += [EMPTY_REPR]
return "\n".join(summary)

4.3 Inference Time Approaches

4.3.1 Semantic-Aware Embeddings and Retrieval

In contrast to text, embeddings for code should incorporate execution and semantic
information, improving retrieval. RAG benefits from both context-aware retrievals and
explicit training on how to use them, enhancing code reuse across languages and APIs.
Beyond static retrieval, Al agents could also dynamically navigate codebases using
command-line tools and IDE functions.

Challenges addressed: 3.5

Semantic and execution aware code embeddings: When training LLMs, code is often treated
as pure tokens (just like text) rather than explicitly incorporating code-specific information such
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as program execution and semantics. As a result, code that is close in embedding space is more
often syntactically similar than semantically similar (Utpala et al., 2023; Zhao et al., 2023), and
there are few reliable methods today to retrieve semantically similar code. However, before the
LLM era, there were a variety of efforts to incorporate code properties when training embeddings.
For example, Nye et al. (2020) train neural modules to represent program operations, leading to
compositional program representations that encode the semantics of the underlying programming
language. Many other works (Zohar and Wolf, 2018; Ellis et al., 2019; Chen et al., 2021b) attempt to
learn execution-aware latent representations for partial and full programs, taking semantics into
account.

We speculate that incorporating these techniques to train models to have better and more semanti-
cally aware representations may lead to models with a more general understanding of code (Sec.
3.6). For example, if correct and buggy programs could hypothetically be separated in embedding
space, then models could be steered away from the incorrect program space. While such a clean
separation might not be possible, we believe that training embeddings to have interesting semantic
properties is worth exploring.

Better retrieval-augmented code generation: When retrieval-augmented language models were
first introduced, they often relied on training the retriever and language model jointly, as in FiD
(Izacard and Grave, 2020), RETRO (Borgeaud et al., 2022), and Atlas (Izacard et al., 2023). As
language models increased in size, the field shifted to a black-box setting (Shi et al., 2023), where
the retrieval module is tuned independently to adapt to the pretrained black-box LLM. This setting
is much more cost-effective, but the language model is not explicitly trained on how to use its
retrievals.

The black-box setting is ideal for challenges such as low-resource languages or specialized contexts.
In these situations, the model has not seen enough training data to fully grasp the context, and the
challenge is often syntactic rather than algorithmic. For example, when adapting to a domain or
a codebase where the relevant API functionality or code style, retrievals can be very instructive.
When using APIs with multiple versions, providing retrievals in the correct version can inform the
model of how to use the APL. When writing code in a completely new language, showing examples
of for loops and while statements will teach the model the syntax of these constructs. Retrievals
should be diverse and given in multiple forms, including documentation, function definitions of
APIs that are used, and example use cases of target functions.

In many other cases, however, we believe that a black-box setting is insufficient. As described in
Sec. 3.5, there are two challenges: 1) knowing what to retrieve and 2) using the retrieval. The first
challenge relies on retrieving relevant examples, both syntactically and semantically. We believe
that having more semantically aware embeddings, as mentioned above, will drastically improve
this. For example, embeddings can be trained contrastively to minimize the distance between
semantically similar programs. Another potential direction is to consider a diverse set of potential
retrievals and then train the retriever to prefer samples that help during generation, as in Atlas
(Izacard et al., 2023).

The second challenge, using the retrieval, is a code reuse task, which requires complex reasoning
and code understanding. Algorithms provided in retrievals may often need to be modified and
adapted significantly to adapt to the current setting. An example of this might be writing a C++
version of a shortest path algorithm when the retrieval is a Java version, a translation task that
models may not have been trained for explicitly. Long chunks of retrieved documentation may
need to be understood precisely so that correct hyperparameters and flags can be used. Yet, in a
black-box setting, models have not been explicitly trained to leverage this information. Therefore,
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just as training on incorrect-correct code pairs can improve program repair, we believe that direct
training can be very beneficial for code reuse and retrieval-augmented generation. Execution
information could also be useful, as code reuse often requires understanding the situation well
enough to identify subtle differences between the context of the retrieved code and the current
context.

Retrieving via code navigation on the fly: Standard retrieval-augmented methods keep a large
retrieval index containing millions of embeddings, which can require a high one-time cost to create.
As the codebase evolves, these embeddings may also need to be continuously updated. Instead of
keeping track of embeddings, another approach is to find retrievals on the fly by navigating the
codebase. We can imagine an agent that learns to use command line functions such as cd, 1s, and
grep, as well as IDE functions such as jumping to function definitions or finding all references of a
function. Static analysis tools can also be paired with the agent to improve code navigation, such
as providing the abstract syntax tree (AST) or file structure of a codebase.

4.3.2 Integration with SWE Development Frameworks

Integrating Al with SWE development frameworks is critical for practical applications and
impact on developer workflows. While software development is inherently integrated with
tools, workflows, scaffolding, and meta-code, these are often absent from source code and
scarce in Al training data. Ensuring that Al deeply understands software deployment
beyond code editing is crucial, as writing code is only a small part of the development cycle.
These can include automated reviews, deployment risk assessments, and documentation
generation. We can also fine-tune LLMs to recognize and avoid known software anti-patterns
such as CWEs.

Challenges addressed: 3.4, 3.5

Incorporating Al into the CI/CD process: In continuous integration and continuous deployment
(CI/CD), automated pipelines are the backbone for building, testing, and deploying code changes.
CI/CD accelerates feedback cycles and minimizes integration issues. Al offers several integration
points within CI/CD. Al-powered code review tools can be incorporated into CI pipelines to
automatically identify and flag style violations, potential security vulnerabilities, and code smells
before human reviewers are involved. Furthermore, Al can provide intelligent deployment risk
assessments. By analyzing code changes, test outcomes, and historical deployment data, Al
can predict the likelihood of deployment issues, informing decisions about whether to proceed
with automated deployment or mandate manual verification steps. Finally, Al can automate the
generation of release notes by summarizing commit messages, issue tracker data, and relevant
code modifications within the CI/CD process.

Steering away from software anti-patterns: In software engineering, certain anti-patterns fre-
quently lead to bugs. For example, common weakness enumeration (CWE) is a categorization of
software and hardware weaknesses often leading to vulnerabilities. Because publicly available
GitHub code often contains code with anti-patterns, bugs, and CWE vulnerabilities, LLMs often
write code susceptible to these issues (Asare et al., 2023; Fu et al., 2023). We hypothesize that
explicitly steering models against these vulnerabilities will lead to more secure and correct code.
One way to do this is to collect a large number of program samples violating each CWE (either
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synthetically or on GitHub) and then use these samples as negative signal during further supervised
fine-tuning or RL stages.

4.3.3 Incorporating SWE Tools

Software engineers integrate a variety of domain-specific tools when writing code. By
repeatedly interacting with tools in an RL-style manner, Al can develop the ability to do the
same. Beyond tool use, using neurosymbolic approaches such as incorporating program
analysis and type-checking can also help enhance LLM capabilities.

Challenges addressed: 3.2

Learning to use SWE Tools: As mentioned in Sec. 3.2, we believe SWE agents should understand
the intricacies of programming tools and be able to autonomously invoke them as needed. There
are three skills to learn: which tool to use, how to use the tool, and how to incorporate the results
of the tool. Similar to how models learn to play complicated games, we believe that intelligent tool
integration can be learned through repeated interactions with the tool in a RL-style manner. One
way we envision this is as follows: first, the interface of the tool must be precisely specified. Next,
data containing repeated interactions from the tool (with varying degrees of success) should be
collected. Finally, multiple rounds of RL and expert iteration can be done to improve understanding
of the tool and learn from misuses.

Evidence that learning higher-level strategies might be possible is that through test-time techniques,
OpenAl’s 03 model learned to write brute-force solutions to verify the correctness of more com-
plicated solutions (El-Kishky et al., 2025). We envision that after learning to use tools, Al coding
agents can autonomously invoke tools as needed to improve its overall world model of the code
and hence its software engineering capabilities.

Neurosymbolic Approaches: Code is a unique domain because there is a vast body of techniques
from programming languages (PL) research to build off of, but the majority of Al for code research
today does not leverage the symbolic properties of code. Some of these PL techniques are as follows:
abstract interpretation (Cousot and Cousot, 1977) is a technique to compute over-approximations of
program state in order to prove the soundness of program properties at points in the code. Concolic
testing (Godefroid et al., 2005; Sen et al., 2005) finds bugs in software by combining concrete and
symbolic execution. Model checking (Clarke, 1997) is a way to prove properties of execution traces
via temporal logic. Linting and type-checking (Cardelli, 1996) provide a static check to ensure that
variables, expressions, and functions adhere to a programming language’s rules. Finally, many
other program analysis algorithms leveraging these tools have been designed to prevent bugs and
ensure code correctness properties.

Traditional PL approaches have a few common shortcomings, which overlap with some of the
issues mentioned in Sec. 2.6. First, they often require very complete and precise specifications.
Many tools need to have specifications for all library functions, need to specialize to a precise
version of the language, and need to specialize to the build system. Second, there is often a high
computational cost due to the large search space. Third, there can be many false positives due to
the limitations of the tool. We believe that deeply integrating these symbolic tools with LLMs can
partially mitigate these challenges.
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We provide a few examples of this potential integration. When generating code, program analysis
techniques could be applied on shorter snippets of Al-generated code to surface potential bugs
or prove properties of the generated code. To improve general code understanding, LLMs can be
trained with information about program structure such as abstract syntax trees (Gong et al., 2024).
When debugging a large codebase, when the scale is too large to directly apply PL techniques,
Al could be first used to narrow down potentially problematic sections of the code which are
then handed off to PL tools for debugging. During code generation in DSLs, LLMs can leverage
the grammar of the programming language to do constrained decoding (Poesia et al., 2022; Geng
et al.,, 2023; Wei et al., 2023b) to mitigate syntactic errors. During code refactoring, abstract
interpretation and static analysis can be used to identify whether new errors have been introduced
and preemptively cut off unpromising search paths.

Deductive Synthesis and Intermediate Languages: Early program synthesis relied on deductive
synthesis approaches (Burstall and Darlington, 1977), where programmers would write a clean
simple implementation and then apply transformation rules to convert it into a more efficient one.
The appeal of deductive approaches is that because these rewrite rules are semantics preserving,
there is a correct-by-construction guarantee. One success story of deductive synthesis is Spiral
(Puschel et al., 2005), a DSL for signal processing kernels that takes advantage of domain-specific
transformation rules to produce implementations beating expert hand-crafted code. Another
example is Halide (Ragan-Kelley et al., 2013), a DSL for high-performance image and array
processing code. Due to the difficulty of writing optimized code, humans generally opt for writing
code in these intermediate DSLs, and we find it promising for LLMs to do the same.

Example. LLM-aided Compilation for Tensor Accelerators: As an example, Hong et al. (2024)
consider the task of generating highly optimized, hardware-efficient code for a tensor
accelerator from a high-level specification of a computation (e.g. C++ code). Their pipeline
works in two steps: first, the high-level specification is translated to a DSL. Then, the DSL
code is symbolically compiled to hardware-specific instructions. The LLM is also used
to optimize the DSL code via a cost model driven search, where it suggests rewrites and
scheduling operations (e.g. loop reordering) that guarantee semantic equivalence.

4.3.4 Scaffolding Human Supervision

At inference time, most machine-generated code will be presented to humans in a format
shaped by the human-Al interface design. Since Al may be responsible for generating the
majority of the code within a human-Al team, it is important to ensure human control
and oversight. By scaffolding human supervision with techniques like summarization and
interactive verification, we could potentially improve trust in Al-generated code.

Challenges addressed: 3.3

Once code LLMs are deployed for inference, it is crucial to scaffold human supervision of Al-
generated code. This goes beyond merely enhancing the accuracy of Al-generated code, as humans
often still need to make the final decision on whether to accept the code or understand it for
future integration and maintenance. A study on Github Copilot usage (Al Madi, 2023) revealed
that programmers tend to allocate less visual attention to Al-generated code. While one solution
is to train humans to better identify issues in Al-generated code (Singhal and Kumar, 2023), a
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more desirable approach is to design Al systems that scaffold human supervision, reducing their
cognitive load when reviewing generated code.

One way to achieve this is by enriching Al-generated content with additional contextual information.
Modern LLM chatbots now routinely generate text with citations for knowledge-intensive queries.
In Collaborative STORM (Jiang et al., 2024), researchers demonstrated that dynamically presenting
hierarchical “mind maps” alongside the actual collected information significantly enhanced human-
Al collaboration, particularly in long sessions. In software engineering specifically, Sun et al. (2024b)
highlighted the benefits of high-quality source code summarization in aiding software developers in
understanding and maintaining machine-generated code. Second, interactive approaches can also
enhance supervision. One example is Live Programming (Ferdowsi et al., 2024), a continuous display
of the runtime values of a program, as a means of lowering the cost of validating Al-generated
code. However, these existing studies are largely limited to specific programming languages
and small codebases. Finally, improving the readability and interpretability of Al-generated
code itself presents a promising direction. For example, Pu et al. (2020) showed that modeling
program synthesis as rational communication improved end-user interpretation and subsequent
communication of code. Expanding on these ideas, future research should prioritize human
interpretability in the design and optimization of Al coding systems, fostering greater trust and
control in Al-assisted software development.

5 Limitations

We identify a few limitations below:

Speculative nature of future work: The ideas we list in the future work section are opinionated
directions we believe have a high chance of success. Many draw upon insights from related work
in the literature, but many lack strong and concrete evidence. We encourage further research
validating or disproving the effectiveness of these ideas.

Limited scope of future work: We also do not include any novel moonshot ideas, and many of the
directions we propose have their roots in existing code LLM literature. Our future work section is
also relatively general and applies holistically to Al for code. However, the field has many tasks
and challenges that can benefit from using domain-specific knowledge and insights, and we do not
touch on these. Finally, this paper is written by people primarily in the academic community, who
may not know the details of cutting-edge methods employed in frontier industry labs. We cater
this paper towards areas we have more expertise in, and thus leave out many promising directions
such as novel architectures.

Focus towards code-specific challenges: In this paper, we mostly focus on code-specific challenges
and techniques. However, there are many techniques that apply to general LLM reasoning and
development that could be directly applied to code. We believe many of these methods can be
used in synergy with code-specific techniques.

Quickly changing nature of the field: The field of LLM for software engineering is progressing
very rapidly, with new innovations released weekly. It is possible that a reader reading this paper
a few months down the line will find that several of the mentioned challenges will have been
partially or entirely resolved.
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6 Conclusion

In this position paper, we have identified key tasks at the heart of Al for software engineering
as well as a set of three measures to classify different realizations of these tasks. We have also
highlighted critical cross-cutting challenges that permeate throughout many tasks. Finally, to drive
progress in Al for code, we've pinpointed a set of exciting and promising research directions for
alleviating these challenges and advancing Al towards being a more capable software engineer.
We hope this work provides valuable insights about the current landscape of Al for software
engineering and encourages future research in these directions. By building on these insights, we
are optimistic that the community can work toward developing Al-driven solutions that better
support software engineers in real-world settings.
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A Survey of Related Work: Tasks in Al Software Engineering

In this section, we briefly survey some of the relevant works for each of the tasks we mention in
Sec. 2. These works are by no means complete, and we encourage the reader to check out the
survey works mentioned in the introduction and in this section for further references.

A.1 Code Generation

Code Completion: Completion typically happens in conjunction with live programming or within
an IDE, helping developers write code faster by suggesting relevant continuations. Traditional
code completion systems rely heavily on syntactic and type-aware models (e.g., AST-based mod-
els), but recent advances leverage LLMs trained on code corpora to offer semantically rich and
context-aware suggestions, naturally following the next-token prediction task in language model-
ing (Radford et al., 2019). Tools like GitHub Copilot and Codex exemplify this trend (Chen et al.,
2021a), and are followed by commercial tools such as Cursor* and Tabnine®. Recent advances in
context-aware (Agrawal et al.,, 2023), grammar-aligned (Park et al., 2024), and constraint-based
decoding (Sun et al., 2023) have improved the quality of local completions, particularly for shorter
code snippets. For longer code snippets, the typical task formulation is method implementation
synthesis given a function signature. This setup is commonly evaluated using benchmarks such as
MBPP (Austin et al., 2021) and HumanEval (Chen et al., 2021a).

Natural Language to Code Generation: Translating natural language into code has long been a
central challenge in Al for programming. Early attempts at code generation involved semantic pars-
ing (Zettlemoyer and Collins, 2012; Wong and Mooney, 2006), where natural language is translated
into logical forms or domain-specific languages. A prominent example is SQL query synthesis from
natural language questions, as seen in systems like Seq2SQL (Zhong et al., 2017) and Spider (Yu
et al., 2019), where the target language is constrained, small, and domain-specific. Recent work
demonstrates that large language models (LLMs) can generalize to general-purpose programming
languages, enabling the generation of larger and more complex code snippets (OpenAl, 2023b).
When applied to code completion, users often begin with natural language instructions in the form
of comments, which LLMs use as context for code synthesis. Beyond function-level code genera-
tion (Austin et al., 2021; Chen et al., 2021a), recent work has extended to class-level generation (Du
et al., 2023), which targets classes in object-oriented programming, and even project-level code
generation (Cao et al., 2024; Wang et al., 2024f), which involves generating or completing entire
multi-file codebases.

Multimodal Code Generation: While text can describe most cases of code generation, certain
instructions are better defined visually. For example, in graphics applications, visual context
such as a trajectory or a 3D model is essential to synthesize the correct code. Demonstrations
of GPT-4’s multi-modal capabilities have shown that models can generate functional webpage
code directly from paper sketches, translating visual layouts into HTML and CSS (OpenAl, 2023a).
LogoMotion (Liu et al., 2025b) explores visually grounded code synthesis for animations and
motion graphics in JavaScript. The system leverages vision-language models (VLMs) to incorporate
both visual inputs and user instructions, enabling code generation that aligns with spatial and
temporal visual cues. Other works, such as SynthesizeCAD (Nandi et al., 2020) and SGP-Bench (Qiu

4https ://www.cursor.so
Shttps://www.tabnine.com
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et al., 2024), explore how LLMs can interface with visual and 3D modalities by generating code in
languages like SVG and CAD.

Code Generation in Low-Resource Languages: As discussed in Sec. 3.7, one major challenge is
writing code in low-adoption general purposed language and domain specific languages (DSLs).
Benchmarks for this include MultiPL-E (Cassano et al., 2023), McEval (Chai et al., 2024), and
VerilogEval (Liu et al., 2023b). A popular method to improve performance is to train on manually
curated and processing data in low-resource languages such as Coq (Florath, 2024) and Verilog
(Pei et al., 2024). Another line of work aims to achieve transfer between different low-resource
languages (Paul et al., 2024; Cassano et al., 2024; Orlanski et al., 2023). Finally, since the lack of data
is a large bottleneck, another popular direction is using relevant retrievals such as useful functions
and library documentation (Yang et al., 2023b; Zhou et al., 2022; Yang et al., 2023b). For a recent
survey of code generation for low-resource languages and DSLs, see (Joel et al., 2024).

Security Concerns Surrounding Code Generation: Despite the growing power of LLMs for code
generation, their outputs often remain insecure, incorrect, or misaligned with user intent. For
instance, BaxBench (Vero et al., 2025) evaluates LLMs on generating secure and correct back-ends,
revealing that while the average functional correctness is already modest (~ 60%), the rate of
secure outputs is even lower (< 35%). To better understand and quantify these limitations, several
benchmarks and evaluation suites have been proposed. SecurityEval (Siddiq and Santos, 2022),
SafeCoder (He et al., 2024), CodeLMSec (Hajipour et al., 2023), CWEval (Peng et al., 2025), and
CyberSecEval (Bhatt et al., 2023; Wan et al., 2024a) each provide distinct lenses on evaluating
vulnerabilities, unsafe API usage, or compliance with common weakness enumerations (CWEs).
In response, several approaches introduce human-in-the-loop guardrails, where developers can
interactively guide, inspect, or constrain the generation process. Dynex (Ma et al., 2025a), for
instance, supports dynamic, step-wise code synthesis with user feedback, enabling real-time
correction and iterative refinement before errors can accumulate.

Human Interaction in Code Generation: Modern code LLMs typically support interactive code
generation through conversational interfaces. Champa et al. (2024) conducted a quantitative analysis
of developer-ChatGPT interactions using the DevGPT dataset (Xiao et al., 2024), examining how the
quality of the initial prompt influences conversation length. Code LLMs can be further optimized
for various interactive scenarios, including debugging environments (Surameery and Shakor, 2023),
educational settings (Kazemitabaar et al., 2023a,b; Prather et al., 2023; Sheese et al., 2024), and
use by non-professional programmers Yan et al. (2024). Beyond human-driven interactions in
chat-based setups, more advanced code generation systems such as coding agents can proactively
ask clarifying questions (Vijayvargiya et al., 2025) or generate test cases for users to validate (Lahiri
et al., 2022; Fakhoury et al., 2024) before generating the actual code, helping to resolve ambiguities.

A.2 Code Transformation

Code Refactoring: Code refactoring aims to simplify and remove repetitions in complex repositories
without altering high-level program intent. While there have been traditional methods (Pailoor
et al., 2024) that refactor data structures, Aider Al introduces a refactoring benchmark® evaluating
LLM'’s ability to output long chunks of code that simplify complex programs without changing
its behavior. More recently, RefactorBench (Gautam et al., 2024) introduced a more complex
benchmark with natural language refactor requests, as well as an LLM agent that can perform
refactoring.

®https://github.com/Aider-AI/refactor-benchmark
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Code Migration: Compared to code refactoring, code migration typically refers to mid-scale
modifications that affect a program’s interface, dependencies, or underlying architecture. Common
examples include switching the back-end database from MySQL to PostgreSQL, migrating a ma-
chine learning model from TensorFlow to PyTorch, or upgrading the Java version from legacy Java
8 to a more modern Java 17. While recent work has introduced benchmark designed to evaluate
library migrations (Islam et al., 2023), works at Google (Nikolov et al., 2025) and Amazon (Omid-
var Tehrani and Anubhai, 2024) have explored LLM-driven solutions for simple but vast migrations.
Google’s system identifies locations for changes, generates edits with LLMs fine-tuned on internal
code, and automatically validates changes through compilation and test execution.

Code Translation (Transpilation): Moving beyond code migration, transpilation involves large-
scale transformation of a program’s underlying programming language. Transpilation serves
not only to modernize outdated codebases but also to eliminate classes of safety issues inherent
to older languages. A particularly active area of research involves transpiling C-based systems
to Rust, a systems-level language that offers strong memory and concurrency safety guarantees.
This direction has garnered attention, including from the U.S. Department of Defense’, which
maintains critical infrastructure built on aging C code. An end-to-end LLM-based approach, such
as Flourine (Eniser et al., 2024), has been proposed for real-world code translation, but it has
achieved only limited success due to frequent compilation errors. Recent efforts like Syzygy (Shetty
et al., 2024), C2SaferRust (Nitin et al., 2025), and AlphaTrans (Ibrahimzada et al., 2024) have shown
the potential for hybrid approaches combining LLMs with traditional program analysis techniques.
However, some significant challenges remain, as identified by Li et al. (2025b), including ensuring
correctness in large codebases while maintaining desirable attributes such as speed, reduced
vulnerabilities, and idiomaticity. Specifically, We anticipate that the techniques discussed in
Section A.3 may help address these remaining challenges.

Code Optimization: Certain refactoring or transpilation tasks are specifically aimed at optimizing
code performance. Prior work has explored the use of LLMs for optimizing standalone programs,
such as PIE (Shypula et al., 2023), which targets C++ functions, and AlphaDev (Mankowitz et al.,
2023a), which discovers more efficient sorting algorithms at the assembly level. These tasks
are particularly challenging due to the vast search space of possible code transformations. More
recently, KernelBench (Ouyang et al., 2025) introduced a benchmark focused on optimizing machine
learning models written in high-level PyTorch code into low-level, high-performance CUDA GPU
kernels. For a broader overview of language models applied to code optimization, see the survey
by Gong et al. (2025).

A.3 Software Testing and Program Analysis

Short-horizon Testing: For short-horizon testing such as unit tests (Lemieux et al., 2023) and
property-based tests (Vikram et al., 2023), LLMs are employed to automatically generate targeted
test cases (Li and Yuan, 2024; Miindler et al., 2025), and even hill-climb on code coverage to improve
test effectiveness (Ryan et al., 2024). At the granularity of individual functions, LLM-generated tests
have also been employed to support downstream tasks such as filtering implementations based
on behavioral correctness (Chen et al., 2022; Zhang et al., 2023b), as well as assisting in program
debugging by surfacing inputs that expose incorrect behavior (Chen et al., 2025).

Long-horizon Testing: Long-horizon testing involves evaluating system behavior across extended
executions, complex interactions, or multiple components, potentially embedded within a CI/CD

"https://www.darpa.mil/news/2024/memory-safety-vulnerabilities
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(Continuous Integration or Delivery) pipeline. Fuzzing (Miller et al., 1990) is a long-horizon testing
approach that continuously generates novel random input. Recent works such as Fuzz4All (Xia
et al., 2024b), KernelGPT (Yang et al., 2023a), and OSS-Fuzz (Liu et al., 2023a; Chang et al., 2024)
have shown that LLMs can significantly improve effectiveness through better input generation and
exploration strategies. Specificatlly, OSS-Fuzz-Gen (Liu et al., 2024b) employs diverse LLMs for
fuzzing harness generation, helping to find novel and complex crashing interactions.

Static Analysis for Vulnerability Detection: Vulnerability Detection refers to the task of identifying
weaknesses or flaws in software code that could be exploited to compromise the system’s security,
stability, or correctness. A wide range of prior work leverages machine learning models such
as Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNSs) to detect software
vulnerabilities (Zhou et al., 2019; Chakraborty et al., 2020; Dinella et al., 2020; Hin et al., 2022; Li
et al., 2021). While some recent methods pre-train or fine-tune LLMSs on code-specific datasets (Fu
and Tantithamthavorn, 2022; Steenhoek et al., 2023; Cheng et al., 2022) to improve vulnerability
classification, several studies have highlighted the limitations of LLMs in real-world software
(Steenhoek et al., 2024; Ding et al., 2024a; Khare et al., 2023). To combat such limitations, works like
Li et al. (2024a), IRIS (Li et al., 2024f), LLMDFA (Wang et al., 2024a), and InferROI (Wang et al.,
2023) explored augmenting static analysis tools (e.g., CodeQL) with LLMs for taint and resource
leak analyses. More recently, BigSleep (2024) demonstrated the potential of using LLMs at a much
bigger scale by finding a real SQLite vulnerability through exploratory variant analysis.

Specialized Program Analysis: Beyond long-running analysis to identify vulnerabilities, several
traditional program analyses have struggled to scale in practice despite their theoretical promise.
For instance, inferring program invariants (properties deemed to always be true at a program point)
has been challenging with traditional symbolic methods such as Daikon (Ernst et al., 2007; Padon
et al., 2016) while being valuable for exposing bugs (Hangal and Lam, 2002) and aiding software
evolution (Ernst et al., 1999). Similarly, type inference for dynamically typed languages suffers from
coverage limitations of rule-based approaches and requires specialized tools like Shapelt (Zheng
and Sen, 2024) for domain-specific challenges such as inferring symbolic tensor shapes.

Specification Inference: Specification inference is the task of automatically recovering formal de-
scription of a program’s expected behavior, including pre-conditions, post-conditions, or invariants.
The availability of specification is at the core of establishing frust (Roychoudhury et al., 2025b),
and existing works (Dinella et al., 2024b; Ruan et al., 2024) have shown that LLMs can help the
inference of such specifications. For instance, Dinella et al. (2024a) presents a program structure
aware technique for synthesizing pre-conditions for arbitrary code snippets, and have established a
dataset of 18K LLM generated pre-conditions on real Java projects.

Invariant Inference: As a subtask of specification inference, invariant inference aims at inferring
loop, function, or class invariants, which are greatly helpful in automatic program verification.
There have been several LLM-based approaches for invariant identification. They enhance tradi-
tional approaches through structured representations (Si et al., 2018), LLM-based prompting (Ka-
math et al., 2023; Pei et al., 2023) and re-ranking (Chakraborty et al., 2023), and reinforcement
learning (Yu et al., 2023). Similarly, works have used sequence-to-sequence models (Wei et al.,
2023a), few-shot LLM approaches like TypeGen (Peng et al., 2023), and generate-then-rank methods
like TIGER (Wang et al., 2024b) for type inference. Consequently, we observe new benchmarks
emerging in the space such as LIG-MM (Liu et al., 2024a) for loop-invariant detection.

Binary Analysis: While the aforementioned tasks primarily focus on human-readable programming
languages, many can also be extended to operate on compiled machine code, or binaries. One
prominent example is binary type inference, which aims to recover high-level type information
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from low-level binary code. It has seen significant improvements with deep learning models and
LLMs (Pei et al., 2021; Zhu et al., 2024). These advancements, alongside other LLM-based analyses,
have enhanced the capabilities of decompilers, enabling them to synthesize human-readable code
from binaries (Liu et al., 2025a). Beyond decompilation, LLMs have also been applied to detect
security vulnerabilities in binaries (Liu et al., 2023c) and to generate semantic summaries that
capture the high-level intent of binary code (Jin et al., 2023).

A.4 Software Maintenance

Code Navigation: Code navigation refers to the task of locating a specific position within a code
repository based on either a natural language description (Liu et al., 2024e) or a programmatic
specification (Avgustinov et al., 2016). Common use cases include identifying where a particular
functionality is implemented, tracing the origin of user input that leads to a vulnerability, or
locating relevant files when starting work on a new feature. This capability underpins many
downstream tasks such as software testing, vulnerability detection, program repair, and code
question answering. Code navigation or code search modules are integral components of modern
code agents (Yang et al., 2024b; Bouzenia et al., 2024; Xia et al., 2024a), often implemented using find
commands, embedding-based similarity search, or query-based tools like CodeQL and Semgrep.

Code Documentation and Summarization: Several works have used LLMs for code summa-
rization invoking techniques like prompting (Sun et al., 2024b; Su and McMillan, 2024; Haldar
and Hockenmaier, 2024; Ahmed et al., 2024b). RepoAgent (Luo et al., 2024) is a framework that
analyzes global contextual relationships in source code to generate fine-grained documentation.
Shi et al. (2024) show that LMs are capable of generating good natural language outlines — text
descriptions alongside code to partition it into semantically coherent sections. One challenge is
that the evaluation of this task is very tricky: the academic community currently lacks datasets and
benchmarks that contain good documentation and the automatic evaluation metrics do not align
well with human metrics (Diggs et al., 2024).

Pull Request (PR) Review: In industry, autonomous software agents such as OpenHands (Wang
et al., 2024¢g) and Devin have been able to automatically review and even fix PRs. At ByteDance,
BitsAI-CR (Sun et al., 2025) is a code review system that identifies issues based on a manually
crafted taxonomy of review rules. In the academic community, there have been several works
studying the ability of Al systems to automatically review PRs (Tufano et al., 2021, 2022; Li et al,,
2022b, 2024b). Recently, AutoCodeRover (Zhang et al., 2024b) combines LLMs with code search to
automatically fix GitHub issues.

Program Repair: Automated program repair has had a long history, with many benchmarks
covering different scopes and languages. These include DroixBench (Tan et al., 2018) for android
apps; Defects4] (Just et al., 2014), GitBug-Java (Silva et al., 2024b), and growingBugs (Jiang et al.,
2021, 2022a,b) for real-world Java; Bugsinpy (Widyasari et al., 2020) for Python; BugSwarm (Tomassi
et al., 2019) for multilingual; DebugBench (Hu et al., 2024), LiveCodeBench (Jain et al., 2024b), and
Codeflaws (Tan et al., 2017) for LeetCode-style problems; and many more.

Historically, there have been many techniques for this task, including heuristic-based APR (using
genetic programming to explore the search space of the correct patch), constraint-based APR
(treating repair as a constraint-solving task), pattern-based APR (apply expert hand-crafted repair
templates), and learning-based APR (using language models) (Zhang et al., 2024a). More recently,
with LLMs, there have been agent-based approaches such as FixAgent (Lee et al., 2024) using
agents specializing in different aspects of debugging, and RepairAgent (Bouzenia et al., 2024) that
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invokes suitable tools. On the other hand, Agentless (Xia et al., 2024a) uses a three-phase process
of localization, repair, and patch validation.

Finally, program repair has also been used as a tool to improve code generation, where error
messages and incorrect test cases are fed back into the model to improve code generation (Madaan
et al., 2023; Chen et al., 2024; Zhang et al., 2023a; Olausson et al., 2024; Zhong et al., 2024a; Tang
et al., 2025). This is also known as self-repair or self-debugging. For a much more comprehensive
survey of automated program repair, we recommend the reader check out this website®.

Code Understanding and Question Answering: Code understanding with language models has
been studied for many years. In earlier days, researchers used the CodeXGLUE (Lu et al., 2021)
benchmark containing tasks such as clone detection, code search, code summarization, and so on.
Nam et al. (2024) create an IDE plugin containing features that help users understand code through
explaining highlighted sections of code and explaining domain-specific code. Yang et al. (2025)
present a survey touching on reasoning-enhanced code intelligence.

A.5 Scaffolding and Meta-Code

Beyond code generation, the broader software engineering ecosystem includes DevOps work-
flows, CI/CD pipelines, and Infrastructure-as-Code (IaC). LLMs have shown particular promise in
generating, debugging, and explaining CI/CD configurations (e.g., GitHub Actions, Jenkinsfiles),
assisting with environment setup, test orchestration, and deployment logic. A case study at Erics-
son (Chaudhary et al., 2024) demonstrates how an LLM-based chatbot can support CI/CD question
answering, enabling engineers to better understand and manage deployment pipelines. LLMs are
also being explored for automated testing across heterogeneous software environments. Execution-
Agent (Bouzenia and Pradel, 2024) presents a language model-driven agent that autonomously
installs, configures, and runs test suites for arbitrary projects.

Beyond CI/CD and testing, LLMs are increasingly used to reason about configuration logic
and scaffolding code, which is a critical but often overlooked layer of modern software systems.
For instance, Yin et al. (2011) conducted an empirical study of real-world configuration errors,
identifying systemic causes of failure such as external dependencies, inter-parameter violations, and
overlooked default parameters. Building on this line of work, Ciri (Lian et al., 2024) confirms the
feasibility of using LLMs for configuration validation. Further, in the domain of IaC, an empirical
study of 812 open-source Terraform projects found that while access policies are commonly adopted,
critical practices like encryption at rest are often neglected (Verdet et al., 2023). This highlights the
opportunity for LLMs to assist practitioners in detecting and enforcing security best practices in
IaC configurations.

A.6 Formal Verification

There are a variety of programming languages designed with different principles to support formal
verification. Some of the popular ones include TLA (Lamport, 1994), Coq (The Coq Development
Team, 2024), Lean (De Moura et al., 2015), Dafny (Leino, 2010), Isabelle (Nipkow et al., 2002), and
Verus (Lattuada et al., 2024).

8https://program-repair.org/
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Formal software verification has seen a few great successes in the last few years: Astrée (Cousot
et al., 2005) was able to completely verify that Airbus A340’s primary flight-control software
had no run-time errors, verifying 132,000 lines of C code. More recently, formal methods have
been applied to verify a cryptographic server (Erbsen et al., 2024) and an IoT lightbulb at both
a hardware and software level (Erbsen et al., 2021). CompCert (Leroy et al., 2016), a verified
compiler and sel4 (Klein et al., 2009), a verified microkernel are demonstrations that formal
methods could be promising for verifiable code. At Amazon, formal methods been used to verify
and protect cryptographic software (Goel et al., 2024), cloud resources (Xu et al., 2024b), and
authorization (Disselkoen et al., 2025). Notably, SV-COMP (Beyer, 2023) is an annual competition
designed to evaluate program verifiers using a curated benchmark of verifiable C and Java code. It
even includes samples from the Linux Driver Verification (LDV) project (Beyer and Petrenko, 2012),
aiding the verification of Linux kernel device drivers. For more applications, we refer the reader to
the survey in Huang et al. (2023).

Recently, the ability of LLMs to write formal verification code. Benchmarks like DafnyBench
(Loughridge et al., 2024) and miniCodeProps (Lohn and Welleck, 2024) were designed to measure
the ability of LLMs to write software proofs in Dafny and Lean, respectively. In Dafny, Poesia
et al. (2024) use a combination of search and prompting to create a synthetic dataset of annotations
greatly improving performance on DafnyBench. Clover (Sun et al., 2024a) generates code alongside
consistency checks (like Dafny annotations), Li et al. (2025c) employ Dafny as an intermediate
language to improve code generation, and Misu et al. (2024) explore prompting and retrieval to
generate Dafny. In Rust, Verus is a popular formal verification language, with AutoVerus (Yang
et al., 2024a) and AlphaVerus (Aggarwal et al., 2024) generating verified specifications and proofs
for Rust functions. There are also many IDE plugins designed to help humans to write code in
formal languages such as Dafny and Lean such as Silva et al. (2024a), Lean Copilot (Song et al.,
2024), and llmstep (Welleck and Saha, 2023).

Finally, there is a growing interest of work in using formal languages like Lean for mathematical
theorem proving, which is covered comprehensively in Li et al. (2024e) and Yang et al. (2024d).
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